G. Pandey, D. K. Tiwari / Tetrahedron Letters 50 (2009) 3296–3298
3297
ium aluminum hydride in THF, under reflux condition produced 11
in 93% yield having a vicinal diol moiety. N-Debenzylation of 11 by
catalytic hydrogenation (10%, Pd/C) at atmospheric pressure of
hydrogen followed by N-Boc protection gave 12 in 93% over two
steps. The oxidative cleavage of 12 using sodium periodate in eth-
anol/water (1:1) solvent at room temperature yielded 13 in 89%
yield. The subsequent reduction of 13 with sodium borohydride
gave compound 14 (92%). The treatment of 14 with TFA/water
(20:1) in dichloromethane at 0 °C led to the concomitant N-Boc
as well as acetonide deprotection affording 4 quantitatively. Since
it was difficult to purify 4 by column chromatography, this product
was acetylated using acetic anhydride/ pyridine with a catalytic
amount of DMAP to obtain 15. Compound 15 was easily purified
by silica gel column chromatography in 30% ethylacetate/petro-
leum ether as eluent.
O
O
H
O
H
O
O
CH
BnO
O
Ref-18
O
a
O
N
H
O
O
7
8
O
H
O
O
H
O
H
H
HO
O
BnO
O
C14H29
C12H25
b
N
N
The spectral data and specific rotation of 15 were in excellent
9
10
H
agreement with the reported values.22
In conclusion, an enantioselective synthesis of (2S,3R,4R)-
xylo-phytosphingosine is achieved from b-lactam derived from
mannitol triacetonide.
D
-
-
O
H
O
O
H
O
D
H
HO
HO
HO
C14H29
C14H29
c
d
HN
NHBoc
12
Acknowledgments
HO
11
The authors thank the Department of Science and Technology,
New Delhi, for financial support and CSIR, New Delhi, for a research
fellowship to D. K. Tiwari.
O
O
C14H29
O
O
C14H29
f
e
References and notes
HO
O
NHBoc
1. Merrill, A. H., Jr.; Sandhoff, K. Sphingolipids: Metabolism and Cell Signaling. In
Biochemistry of Lipids, Lipoprotein, and Membranes; Vance, D. E., Vance, J. E., Eds.;
Elsevier: New York, 2002; pp 373–407.
2. (a) Scneiter, R. Bioassays 1999, 21, 1004; (b) Kobayashi, E.; Motoki, K.;
Yamaguchi, Y.; Uchida, T.; Fukushima, H.; Koezuka, Y. Bioorg. Med. Chem.
1996, 32, 133.
NHBoc
14
13
g, h,
3. Okabe, K.; Keeman, R. W.; Schmidt, G. Biochem. Biophys. Res. Commun. 1968, 31,
137.
OAc
4. Takamatsu, K.; Mikami, M.; Kikuchi, K.; Nozawa, S.; Iwamori, M. Biochim.
Biophys. Acta 1992, 1165, 177.
AcO
C13H27
5. Barenholz, Y.; Gatt, S. Biochim. Biophys. Res. Commun. 1967, 27, 319.
6. (a) Wertz, P. W.; Miethke, M. C.; Long, S. A.; Stauss, J. S.; Owning, D. T. J. Invest.
Dertmatol. 1985, 84, 410; (b) Schmidt, R. R. In Liposome Dermatics; Braun-Falco,
O., Corting, H. C., Maibach, H. I., Eds.; Springer: Berlin, 1992; pp 44–56.
7. Vance, D. E.; Sweeley, C. C. J. Lipid Res. 1967, 8, 621.
8. For recent reviews on sphingosines/ceramides, see: (a) Liao, J.; Tao, J.; Lin, G.;
Liu, D. Tetrahedron 2005, 61, 4715; (b) Curfman, C.; Liotta, D. Methods Enzymol.
1999, 311, 391; (c) Jeong-Ju, Park; Ji, Hyung Lee; Qian, Li; Kristine, Diaz; Young-
Tae, Chang; Sung-Kee, Chung Bioorg. Chem. 2008, 36, 220–228.
9. (a) Dickson, R. C.; Nagiec, E. E.; Skrzypek, M.; Tillman, P.; Wells, G. B.; Lester, R.
L. J. Biol. Chem. 1997, 272, 30196; (b) Schneiter, R. Bioessays 1999, 21, 1004.
10. (a) Brodesser, S.; Sawatzki, P.; Kolter, T. Eur. J. Org. Chem. 2003, 2021; (b)
Vankar, Y. D.; Schmidt, R. R. Chem. Soc. Rev 2000, 29, 201.
11. (a) Inokuchi, J.-i.; Usuki, S.; Jimbo, M. J. Biochem. (Tokyo) 1995, 117, 766; (b)
Motoki, K.; Kobayashi, E.; Uchida, T.; Fukushima, H.; Koezuka, Y. Bioorg. Med.
Chem. Lett. 1995, 5, 705; (c) Pushkareva, M.; Chao, R.; Beilawska, A.; Merrill, H.;
Crane, H. M.; Lagu, B.; Liotta, D.; Hannun, Y. A. Biochemistry 1995, 34, 1885.
12. For studies on the synthesis of phytosphingosine and its derivatives, see: (a)
Sugiyama, S.; Honda, M.; Komori, T. Liebigs Ann. Chem. 1990, 1069; (b) Dondoni,
A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. Chem. 1990, 55, 439; (c) Wild, R.;
Schmidt, R. R. Tetrahedron: Asymmetry 1994, 5, 2195; (d) Murakami, T.;
Minamikawa, H.; Hato, M. Tetrahedron Lett. 1994, 35, 745; (e) Nakashima, H.;
Hirata, N.; Iwamura, T.; Yamagiwa, Y.; Kamikawa, T. J. Chem. Soc., Perkin Trans.
1 1994, 2849; (f) Kobayashi, S.; Hayashi, T.; Kawasuji, T. Tetrahedron Lett. 1994,
35, 9573; (g) Matsumoto, K.; Ebatu, T.; Matsushita, H. Carbohydr. Res. 1995, 279,
93; (h) Wild, R.; Schmidt, R. R. Liebigs Ann. 1995, 755; (i) Li, Y. L.; Mao, X. H.;
Wu, Y. L. J. Chem. Soc., Perkin Trans. 1 1995, 1559; (j) Kemp, S. J.; Bau, J.;
Pedersen, S. F. J. Org. Chem. 1996, 61, 7162; (k) Lin, G. Q.; Shi, Z. C. Tetrahedron
1996, 52, 2187.
13. (a) Yoda, H.; Oguchi, T.; Takabe, K. Tetrahedron: Asymmetry 1996, 7, 2113; (b)
Murakami, M.; Ito, H.; Ito, Y. Chem. Lett. 1996, 185; (c) Wee, A. G. H.; Tang, F.
Tetrahedron Lett. 1996, 37, 677; (d) Shimizu, M.; Wakioka, I.; Fujisawa, T.
Tetrahedron Lett. 1997, 38, 6027; (e) Imashiro, R.; Sakurai, O.; Yamashita, T.;
Horikawa, H. Tetrahedron 1998, 54, 10657; (f) Takikawa, H.; Muto, S.; Mori, K.
Tetrahedron 1998, 54, 3141; (g) Li, S.; Pang, J.; Wilson, W. K.; Schroepfer, J., Jr.
Tetrahedron: Asymmetry 1999, 10, 1697; (h) Murakami, T.; Toguchi, K.
Tetrahedron 1999, 55, 989; (i) Shirota, O.; Nakanishi, K.; Berova, N. Tetrahedron
1999, 55, 13643; (j) Fernandes, R. A.; Kumar, P. Synthesis 2003, 1, 129.
NHAcOAc
15
Scheme 1. Reagents and conditions: (a) PPh3BrC13H27, n-BuLi, dry THF, 0 °C, 1 h,
70%; (b) HCOONH4, Pd/C (10%), MeOH, reflux, 4 h; 80%; (c) LAH, dry THF, reflux, 4 h,
93%; (d) H2, Pd/C (10%), MeOH, (Boc)2O, rt 10 h, 93%; (e) NaIO4, EtOH:H2O (1:1) rt,
30 min, 89%; (f) NaBH4, dry. MeOH, 0 °C to rt, 10 h; 92%; (g) TFA/H2O (20:1), DCM,
0 °C, 3 h; (h) Ac2O, dry Py, DMAP (cat) 91%.
While all these reports present attractive approaches to
sphingosines, the installation of the tetradecyl chain has not been
easy and has often produced a mixture of different products.21
Therefore, it was felt that a route which introduces the long tetra-
decyl chain in sphingosines before the opening of the b-lactam ring
could be an attractive strategy. Toward this end, we have devised a
-xylo-phytosphingosine, starting from b-lac-
-mannitol triacetonide 7 and report herein
our successful preliminary endeavor (Scheme 1).
synthetic route for
tam 8 derived from
D
D
The required b-lactam 8 was synthesized in 70% yield using the
reported protocol from D
-mannitol triacetonide 7.18 Subjecting 8 to
Wittig olefination with a 13 carbon ylide in the presence of n-BuLi
at 0 °C produced 9 in 70% yield as a cis, trans mixture (55:45), con-
firmed by 1H NMR spectra. The geometrical isomers ratio was of no
relevance to the planned synthetic sequence as the double bond
was to be reduced in the immediate next step. It was also expected
that during the reduction of the olefinic double bond of 9, O-deb-
enzylation would occur. Accordingly, 9 upon transfer hydrogena-
tion using ammonium formate and Pd/C (10%) in methanol
furnished 10 in 80% yield. Compound 10 upon reduction with lith-