Izquierdo et al.
JOCArticle
STO-3G) value. So we conclude that the activation barrier for
the 5-exo-trig reaction is high, which is in line with the relatively
high temperatures used in experiment.
B3LYP method25-27 with the standard 6-31G(d) basis set28,29
was employed for the high-level system. All systems were treated
with the spin-restricted formalism. The choice of DFT methods
was based on previous studies which showed that DFT (and in
particular B3LYP together with the 6-31G(d) basis set) give
reasonable descriptions of the reaction mechanism of pericyclic
reactions.30-37 Hessians were computed to determine the nature
of stationary points (one or zero imaginary frequencies for
transition states and minima, respectively) and to calculate
unscaled zero-point energies (ZPEs) as well as thermal correc-
tions and entropy effects by using the standard statistical-
mechanics relationships for an ideal gas from which Gibbs free
energies have been calculated at 298 K.38
Summary and Conclusions
In summary, we report the first example of the intramo-
lecular nucleophilic addition of the hydroxyl group to the
fullerene double bond adjacent to the pyrrolidine ring, in a
totally regioselective process, affording the cis-1 isomer. In
contrast to the previous examples with phenols, which
require the existence of an intramolecular H-bond and the
presence of a methyl group on C-2 of the pyrrolidine ring to
afford the cyclized compound, the formation of the oxygen
pentagonal ring is highly favored and occurs spontaneously
in a one synthetic step. These results are underpinned by
theoretical calculations (DFT) which show that the 1,3-
dipolar cycloaddition reaction involving the formation of
the pyrrolidino ring is an exothermic process with a low
activation barrier. The 5-exo-trig cyclization reaction invol-
ving the nucleophilic attack of the hydroxyl group to the
fullerene surface is also moderately exothermic but it has a
substantially higher energy barrier in accordance with the
fact that high temperatures have to be reached to obtain the
final product.
Preparation of Fulleropyrrolidine Derivative 7. A solution of
Et3N (101 mg, 1 mmol) and methyl serinate hydrochloride
(155 mg, 1 mmol) was stirred at room temperature for 30 min.
This mixture was added to a solution of formaldehyde (30 mg,
1 mmol) and C60 (180 mg, 0.25 mmol) in toluene (150 mL) and
was refluxed for 1 h and 30 min. After the solution had cooled to
room temperature, the solvent was removed in vacuo, and the
crude product was purified by flash chromatography over silica
gel, using toluene as eluent, to obtain product 7 in 20% yield. 1H
NMR (CDCl3, 298 K, 700 MHz) δ 3.90 (s, 3H, CH3), 4.89 (d,
1H, J=10.6 Hz, CH2-O), 4.94 (d, 1H, J=9.2 Hz, CH2-N), 5.06
(d, 1H, J=9.2 Hz, CH2-N), 5.11 (d, 1H, J=6.0 Hz, N-CH2-
O), 5.21 (d, 1H, J=10.6 Hz, CH2-O), 5.32 (d, 1H, J=6.0 Hz,
N-CH2-O); 13C NMR (CDCl3, 298 K, 175 MHz) δ 53.1, 65.6,
70.3, 70.9, 74.6, 86.1, 87.2, 135.0, 135.5, 137.1, 137.12, 139.4,
139.7, 140.5, 141.6, 141.7, 141.8, 141.88, 141.9, 142.1, 142.2,
142.23, 142.3, 142.7, 142.77, 142.79, 142.8, 143.2, 143.22, 144.3,
144.4, 144.5, 144.7, 144.9, 145.3, 145.4, 145.5, 145.56, 145.6,
145.7, 145.8, 145.9, 146.07, 146.1, 146.2, 146.3, 146.4, 146.5,
This new and facile reaction opens the way to the pre-
paration of a variety of new heterocycle-fused fullerenes
from readily available alcohols. Work is currently in pro-
gress to explore the scope of the reaction with other alcohols
and heteroatoms such as sulfur (-SH) and nitrogen (-NH)
as nucleophilic reagents.
147.3, 147.4, 150.6, 150.7, 154.3, 154.7, 171.0; FTIR (KBr, cm-1
)
526, 700, 1110, 1262, 1741; HRMS (ESI) calcd for C66H9NO3Na
886.0480, found 886.04746.
Experimental Section
Preparation of Compound 11. A mixture of hydroxyacetalde-
hyde 9 (15.61 mg, 0.13 mmol), C60 (180 mg, 0.25 mmol), and
sarcosine (89 mg, 1 mmol) in chlorobenzene (150 mL) was
refluxed for 2 days. After the solution had cooled to room
temperature, the solvent was removed in vacuo and the crude
product was purified by flash chromatography over silica gel,
using initially CS2 as eluent (to separate the unreacted fullerene),
then with toluene, and, finally, with toluene/ethyl acetate (9:1)
to obtain product 11 in 25% yield together with N-methylfuller-
opyrrolidine 12 in 40% yield.13
Full geometry optimizations have been carried out with the
two-layered ONIOM approach,19,20 using the Gaussian 03
program.21 The density functional theory (DFT) SVWN meth-
od22,23 together with the standard STO-3G basis set24 was used
for the low-level calculations, and the hybrid density functional
(19) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber,
S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357–19363.
ꢁ
(20) Dapprich, S.; Komaromi, I.; Byu, K. S.; Morokuma, K.; Frisch, M.
Spectral Data for Compound 11. 1H NMR (CDCl3, 298 K, 500
MHz) δ 2.89 (s, 3H, CH3), 3.81 (d, 1H, J=3.0 Hz, CH-N), 3.99
(d, 1H, J=9.2 Hz, CH2-N), 4.49 (dd, 1H, J=10.8, 3.0 Hz,
CH2-O), 4.69 (d, 1H, J=9.2 Hz, CH2-N), 4.82 (d, 1H, J=10.8
Hz, CH2-O), 6.34 (s, 1H, H-C60); 13C NMR (CDCl3, 298 K,
125 MHz) δ 39.8, 58.5, 65.5, 67.0, 70.5, 74.8, 81.7, 94.6, 128.1,
135.0, 135.8, 136.0, 138.0, 138.9, 140.7, 141.0, 141.4, 142.1,
J. J. Mol. Struct. (Theochem) 1999, 461-462, 1–21.
(21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci,
B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, G.; Dapprich, S.; Daniels, A.
D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komar-
omi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.01;
Gaussian, Inc., Pittsburgh, PA, 2003.
(29) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222.
ꢀ
´
n, N.; Sola, M. J. Org.
(30) Cases, M.; Duran, M.; Mestres, J.; Martı
Chem. 2001, 66, 433–442.
(31) Di Valentin, C.; Freccero, M.; Gandolfi, R.; Rastelli, A. J. Org.
Chem. 2000, 65, 6112–6120.
(32) Dinadayalane, T. C.; Vijaya, R.; Smitha, A.; Sastry, G. N. J. Phys.
Chem. A 2002, 106, 1627–1633.
(22) Slater, J. C. Quantum Theory of Molecules and Solids; McGraw-Hill:
New York, 1974; Vol. 4.
(33) Freccero, M.; Gandolfi, R.; Sarzi-Amade, M.; Rastelli, A. J. Chem.
Soc., Perkin Trans. 2 1998, 2413–2419.
(23) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200–1211.
(24) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51,
2657–2664.
(34) Goldstein, E.; Beno, B.; Houk, K. N. J. Am. Chem. Soc. 1996, 118,
6036–6043.
(35) Isobe, H.; Yamanaka, S.; Yamaguchi, K. Int. J. Quantum Chem.
2003, 95, 532–545.
(25) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
(26) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
(27) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J.
Phys. Chem. 1994, 98, 11623–11627.
(36) Wiest, O.; Houk, K. N. Top. Curr. Chem. 1996, 183, 1–24.
(37) Wiest, O.; Houk, K. N.; Black, K. A.; Thomas, B. J. Am. Chem. Soc.
1995, 117, 8594–8599.
(28) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56,
2257–2261.
(38) Atkins, P.; De Paula, J. Physical Chemistry; Oxford University Press:
Oxford, UK, 2006.
6258 J. Org. Chem. Vol. 74, No. 16, 2009