3218
J. Clayden, H. Turner / Tetrahedron Letters 50 (2009) 3216–3219
Table 1
Kinetic resolution in the oxidation of sulfanyl ureas under the conditions of Scheme 3
Entry
S.M.
X=
R=
Catalyst
Oxidant,
equiv
Extent of
reaction (%)
er remaining
S.M
Product, ratio
syn:anti
er of syn
sulfoxide
Cacld S
factor
1
2
3
4
5
6
7
8
2a
2a
2a
2a
2a
2b
2c
7a
t-Bu
t-Bu
t-Bu
t-Bu
t-Bu
t-Bu
t-Bu
(Me3Si)2CH
Me
Me
Me
Me
10 + Ti(Oi-Pr)4
10 + Ti(Oi-Pr)4
11 + Ti(Oi-Pr)4
12 + VO(acac)2
13 + VO(acac)2
13 + VO(acac)2
13 + VO(acac)2
13 + VO(acac)2
t-BuOOH, 2
PhMe2COOH, 2
t-BuOOH, 2
H2O2, 2
H2O2, 1.2
H2O2, 1.2
81
79
41
39
49
43
24
63
—
—
—
—
3a, 33:67
3a, 38:62
3a, 46:54
3a, 58:42
3a, 95:5
3b, 84:13
3c, 55:45
9a, 59:41
—
—
—
—
86:14
89:11
—
—
—
—
–
300
—
2
Me
97:3a
—
c-Hx
p-Tol
Me
H2O2, 2.4
H2O2, 1.2
55:45
93:7b
—
8
a
Isolated in 30% yield.
Isolated in 25% yield.
b
the sulfinyl substituent in a more hindered environment and
thus leads to higher selectivity.
In summary, we present the first method for the asymmetric
synthesis of atropisomeric ureas, employing kinetic resolution
of a sulfide. Stable atropisomeric ureas were obtained in up to
97:3 er.
O
N
NHPh
SMe
e.r. = 97:3; [ α]D22 = +64
ΔG‡rac = 132 kJ mol–1
t1/2(25 °C) = ca. 500 yrs
Me
(+)-2a
Acknowledgements
We are grateful to Organon Laboratories (Lanarkshire, Scotland)
and to the EPSRC for their support, and to Dr. E. Moir for many
helpful discussions.
O
N
NHPh
SMe
Me
e.r. = 93:7; [ α]D22 = +50
ΔG‡rac = 112 kJ mol–1
t1/2(25 °C) = ca. 8 weeks
Me3Si
References and notes
Me3Si
1. Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994;
Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis 1992, 503.
2. Clayden, J. Angew. Chem., Int. Ed. 1997, 36, 949.
(+)-7a
3. Dai, X.; Virgin, S. Tetrahedron Lett. 1999, 40, 1245; Clayden, J.; Johnson, P.; Pink,
J. H.; Helliwell, M. J. Org. Chem. 2000, 65, 7033; Fujita, M.; Kitagawa, O.;
Yamada, Y.; Izawa, H.; Hasegawa, H.; Taguchi, T. J. Org. Chem. 2000, 65, 1108;
Clayden, J.; McCarthy, C.; Cumming, J. G. Tetrahedron Lett. 2000, 41, 3279;
Clayden, J.; Helliwell, M.; McCarthy, C.; Westlund, N. J. Chem. Soc., Perkin Trans.
1 2000, 3232; Clayden, J.; Lai, L. W.; Helliwell, M. Tetrahedron: Asymmetry 2001,
12, 695.
Scheme 4. Kinetic stability of atropisomeric ureas. Absolute stereochemistry
assumed P as shown, but unconfirmed: see Ref. 14.
4. Clayden, J.; Stimson, C. C.; Keenan, M. Synlett 2005, 1716.
O
5. Adler, T.; Bonjoch, J.; Clayden, J.; Font-Bardía, M.; Pickworth, M.; Solans, X.;
Solé, D.; Vallverdú, L. Org. Biomol. Chem. 2005, 3, 3173; Clayden, J.; Lemiègre, L.;
Pickworth, M.; Jones, L. Org. Biomol. Chem. 2008, 6, 2908.
6. Clayden, J.; Turner, H.; Helliwell, M.; Moir, E. J. Org. Chem. 2008, 73, 4415.
7. Clayden, J.; Turner, H.; Pickworth, M.; Adler, T. Org. Lett. 2005, 7, 3147.
8. Clayden, J.; Dufour, J. Tetrahedron Lett. 2006, 47, 6945; Clayden, J.; Dufour, J.;
Grainger, D.; Helliwell, M. J. Am. Chem. Soc. 2007, 129, 7488; Clayden, J.;
Hennecke, U. Org. Lett. 2008, 10, 3567.
O
Ph exo
N
Me
N
N
H
N
H
S
O
S
10b
p-Tol
p-Tol
p-Tol
p-Tol
O
80:20
9. Clayden, J. Chem. Commun. 2004, 127.
NaH, MeI
10. Clayden, J.; Mitjans, D.; Youssef, L. H. J. Am. Chem. Soc. 2002, 124, 5266.
11. Clayden, J.; Worrall, C. P.; Moran, W.; Helliwell, M. Angew. Chem., Int. Ed. 2008,
47, 3234.
O
Me
12. Ates, A.; Curran, D. P. J. Am. Chem. Soc. 2001, 123, 5130; Rios, R.; Kimeno, C.;
Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10272; Chan, V.; Kim, J. G.;
Jimeno, C.; Carroll, P. J.; Walsh, P. J. Org. Lett. 2004, 6, 2051–2053; Ohashi J.
Chem. Soc., Perkin Trans. 2 1996, 61; Azumaya, I.; Okamoto, I.; Nakayama, S.;
Tanatani, A.; Yamaguchi, K.; Shudo, K.; Kagechika, H. Tetrahedron 1999, 55,
11237; Sakamoto, M.; Sato, N.; Mino, T.; Kasashima, Y.; Fujita, T. Org. Biomol.
Chem. 2008, 6, 848; Bracegirdle, A.; Clayden, J.; Lai, L. W. Beilstein J. Org. Chem.
2008, 4, 47.
O
Me
N
N
Me
Ph endo
N
Me
N
S
O
S
14
O
>95:5
13. Clayden, J.; Lai, L. W. Angew. Chem., Int. Ed. 1999, 38, 2556; Clayden, J.; Lai, L. W.
Tetrahedron Lett. 2001, 42, 3163; Clayden, J.; Lai, L. W.; Helliwell, M.
Tetrahedron 2004, 60, 4399; Clayden, J.; Kubinski, P. M.; Sammiceli, F.;
Helliwell, M.; Diorazio, L. Tetrahedron 2004, 60, 4387.
14. We have been unable to determine with complete certainty the relative or
absolute stereochemistry of the compounds in this Letter, but from the
known conformational preference of related ureas (see Ref. 20) we deduce
syn stereochemistry for the more thermodynamically stable of each pair of
sulfoxides. The major product of m-CPBA oxidation turns out also to be the
more stable, where both were determined. Absolute stereochemistry is
deduced from the fact that (S)-13 gives (S) sulfoxides (Ref. 17i), and if
the syn (=M, S) sulfoxide is formed faster the remaining sulfanylurea should
be P.
Ph endo
Scheme 5. Contrasting N–CO and N–Ar thermodynamic conformational selectiv-
ities in differently substituted ureas.
>95:5 (Scheme 5). We assume this outcome is due to the
contrasting conformations of the two classes of urea: X-ray crys-
tal structures and NMR suggest that ‘NH’ ureas 3, 8, 9 and 10
adopt an ‘exo’ conformation shown in Scheme 5, while fully
alkylated N,N0-diaryl ureas such as 14 are known to prefer an
‘‘endo” conformation (as shown in Scheme 5),5,21 which places
15. Mills, R. J.; Taylor, N. J.; Snieckus, V. J. Org. Chem. 1989, 54, 4372.
16. For details of the method used, see Ref. 5.