3796
S. Muthusamy, P. Srinivasan / Tetrahedron Letters 50 (2009) 3794–3797
5. Casanova, R.; Reichstein, T. Helv. Chim. Acta 1950, 33, 417.
N2
N2
N
6. Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssié, P. Tetrahedron Lett.
1973, 37, 2233.
X
O
O
7. (a) Jones, K.; Toutounji, T. Tetrahedron 2001, 57, 2427; (b) Kettle, J. G.; Faull, A.
W.; Fillery, S. M.; Flynn, A. P.; Hoyle, M. A.; Hudson, J. A. Tetrahedron Lett. 2000,
41, 6905; (c) Shi, G.-Q.; Cao, Z.-Y.; Cai, W.-L. Tetrahedron 1995, 51, 5011.
8. (a) Muthusamy, S.; Gnanaprakasam, B. Tetrahedron Lett. 2008, 49, 475; (b)
Muthusamy, S.; Gnanaprakasam, B. Tetrahedron Lett. 2007, 48, 6821; (c)
Muthusamy, S.; Krishnamurthi, J. Tetrahedron Lett. 2007, 48, 6692; (d)
Muthusamy, S.; Gnanaprakasam, B.; Suresh, E. Org. Lett. 2005, 7, 4577; (e)
Muthusamy, S.; Krishnamurthi, J.; Nethaji, M. Chem. Commun. 2005, 3862; (f)
Muthusamy, S.; Gunanathan, C.; Nethaji, M. J. Org. Chem. 2004, 69, 5631.
9. (a) Muthusamy, S.; Gunanathan, C. Synlett 2002, 1783; (b) Muthusamy, S.;
Gunanathan, C.; Babu, S. A.; Suresh, E.; Dastidar, P. Chem. Commun. 2002, 824.
10. Cava, M. P.; Little, R. L.; Naipier, D. R. J. Am. Chem. Soc. 1958, 80, 2257.
11. General procedure for the synthesis of bis(3-alkoxyoxindoles) 3: 1.0 mol % of
Rh2(OAc)4 was added to a stirred solution of diazo amides 1 (3 mmol) and
OH OH
N
( )n
4a, n = 1; 4b, n = 2
2
Rh2(OAc)4 CH2Cl2/DMF
50:2, rt
O
X
O
N
Ha
Hb
O
O
N
( )n
dihydroxy compounds
2 (1.0 mmol) in a freshly distilled 50 mL of dry
dichloromethane. To this solution, 2 mL of freshly prepared dry DMF
(distilled over CaH2, stored over 5 Å molecular sieves under the argon
balloon) was added for the better solubility of dihydroxy compounds. The
reaction was monitored by TLC. After completion of the reaction, the solvent
was evaporated under reduced pressure and the residue was purified by flash
column chromatography over silica gel.
5
Scheme 2. Synthesis of macrocyclic oxindoles via double O–H insertion reaction
methodology.
All new compounds exhibited spectral data consistent with their structures.
Selected spectral
dihydro-2H-indol-2-one) (3a): Red thick oil. IR (CH2Cl2): 2935, 1716, 1614,
1493, 1470, 1421, 1374, 1265, 1093, 1024, 896, 738 cmꢀ1 1H NMR (200 MHz,
data: 3,30-[Ethane-1,2-diylbis(oxy)]bis(1-methyl-1,3-
Table 2
.
Reactions of bis(diazo amides) 4 with dihydroxy compounds 2
CDCl3): d 3.16 (6H, s, N–CH3), 3.88–4.11 (4H, m, OCH2), 4.98 (2H, s, OCH), 6.79
(2H, d, J = 7.3 Hz), 7.07 (2H, t, J = 7.5 Hz), 7.33 (2H, t, J = 7.4 Hz), 7.44 (2H, d,
J = 7.2 Hz). 13C NMR (50.3 MHz, CDCl3): d 26.6 (CH3), 68.8 (CH2), 68.0 (CH2),
76.5 (CH), 108.8 (CH), 125.6 (quat-C), 126.1 (CH), 130.1 (CH), 144.8 (quat-C),
175.1 (quat-C). MS: m/z = 352 (M+). Anal. Calcd for C20H20N2O4: C, 68.17; H,
5.72; N, 7.95. Found: C, 68.41; H, 5.70; N, 7.96. 3,30-[Hexane-1,6-
diylbis(oxy)]bis(1-methyl-1,3-dihydro-2H-indol-2-one) (3d): Yellow solid.
Mp 109–111 °C (hexane/CHCl3). IR (KBr): 2932, 1715,1614, 1493, 1469, 1373,
Entry
n
X
Reaction time (min)
Yield of 5a (%)
a
b
c
d
e
2
2
1
1
1
–(CH2)2–
–CH2–
–(CH2)4–
–(CH2)6–
p-Xylenyl
40
44
45
48
55
75
78
70
72
65
1350, 1264, 1113, 1046, 739 cmꢀ1 1H NMR (200 MHz, CDCl3): d 1.31–1.42 (4H,
.
a
Yields (unoptimized) refer to isolated and chromatographically pure com-
m), 1.55–1.66 (4H, m), 3.16 (6H, s, N–CH3), 3.53–3.63 (2H, m, OCH2), 3.71–3.82
(2H, m, OCH2), 5.05 (2H, s, OCH), 6.79 (2H, d, J = 7.6 Hz), 7.07 (2H, t, J = 7.2 Hz),
7.28–7.39 (4H, m). 13C NMR (50.3 MHz, CDCl3): d 26.4 (CH2), 26.6 (N–CH3), 30.4
(CH2), 69.5 (OCH2), 76.5 (OCH), 108.9 (CH), 123.5 (CH), 125.8 (CH), 125.9 (quat-
C), 130.5 (CH), 144.9 (quat-C), 175.3 (quat-C). MS: m/z = 408 (M+, 15.6), 190
(3.5), 162 (100), 146 (63), 91 (12.8). Anal. Calcd for C24H28N2O4: C, 70.57; H,
6.91; N, 6.86. Found: C, 70.73; H, 6.94; N, 6.87. 3,30-[Propane-1,3-
diylbis(oxy)]bis(1-allyl-1,3-dihydro-2H-indol-2-one) (3j): Red thick oil. IR
pounds 5.
In conclusion, we have demonstrated a facile double O–H inser-
tion reaction methodology using the diazo amides in the presence
of rhodium(II) acetate catalyst. This approach furnished an assort-
ment of prototype bis(3-oxy-1,3-dihydro-2H-indol-2-one) systems
by forming two C–O bonds in a single synthetic step. This facile
double O–H insertion reaction protocol was successfully applied
to synthesize several C2-symmetric macrocycles with oxindole
units incorporated in a diastereoselective manner. Further study
to find the reason for the high diastereoselectivity is in progress.
(CH2Cl2): 2987, 1723 1613, 1489, 1468, 1362, 1265, 1182, 1107, 742 cmꢀ1
.
1H NMR (200 MHz, CDCl3): d 1.91 (2H, t, J = 6.1 Hz), 3.67–3.74 (2H, m, OCH2),
3.81–3.88 (2H, m, OCH2), 4.15–4.30 (4H, m, N–CH2), 4.84 (2H, s, OCH), 5.11–
5.28 (4H, m, C = CH2), 5.67–5.81 (2H, m, CH = C), 6.26 (2H, d, J = 7.6 Hz), 7.08
(2H, t, J = 7.1 Hz), 7.21–7.33 (4H, m). 13C NMR (50.3 MHz, CDCl3): d 21.3 (CH2),
42.5 (N–CH2), 66.1 (OCH2), 66.2 (OCH2), 76.3 (OCH), 109.6 (CH), 118.1 (CH2),
123.2 (CH), 125.6 (quat-C), 125.8 (CH), 130.1 (CH), 131.6 (CH), 134.3 (quat-C),
174.7 (quat-C). MS: m/z = 418 (M+). Anal. Calcd for C25H26N2O4: C, 71.75; H,
6.26; N, 6.69. Found: C, 71.59; H, 6.27; N, 6.67. 3,30-[1,4-
Phenylenebis(methyleneoxy)])]bis(1-methyl-1,3-dihydro-2H-indol-2-one)
(3q): Red solid. Mp 137–139 °C (hexane/CHCl3). IR (KBr): 2936, 1713, 1613,
Acknowledgments
1493, 1470, 1374, 1350, 1264, 1108, 1052, 753 cmꢀ1 1H NMR (200 MHz,
.
CDCl3): d 3.17 (6H, s, N–CH3), 4.83 (2H, s, OCH), 4.90 (4H, d, J = 14.8 Hz), 6.80
(2H, d, J = 7.8 Hz), 7.07 (2H, t, J = 7.6 Hz), 7.27–7.43 (8H, m). 13C NMR
(50.3 MHz, CDCl3): d 26.6 (N–CH3), 71.1 (O–CH2), 75.3 (OCH), 108.9 (CH),
123.5 (CH), 123.2 (CH), 125.9 (CH), 127.6 (quat-C), 129.0 (CH), 130.5 (CH),
137.8 (quat-C), 144.8 (quat-C), 175.3 (quat-C). MS: m/z = 428 (M+). Anal. Calcd
for C26H24N2O4: C, 72.88; H, 5.65; N, 6.54. Found: C, 72.69; H, 5.64; N, 6.55.
12. Kulkowit, S.; McKervey, M. A. J. Chem. Soc., Chem. Commun. 1981, 616.
13. (a) Hu, W.; Timmons, D. J.; Doyle, M. P. Org. Lett. 2002, 4, 901; (b) Doyle, M. P.;
Hu, W. Synlett 2001, 1364; (c) Davies, H. M. L.; Townsend, R. J. J. Org. Chem.
2001, 66, 6595.
This research was supported by the Department of Science and
Technology, New Delhi. We thank DST, New Delhi and AvH founda-
tion, Germany for NMR and IR facilities, respectively. We thank Dr.
E. Suresh for the X-ray analysis. P.S. thanks CSIR, New Delhi, for a
fellowship.
References and notes
14. General procedure for the synthesis of macrocycles 5: 1.0 mol % of Rh2(OAc)4 was
added to a stirred solution of bis(diazo amides) 4 (1.0 mmol) and dihydroxy
compounds 2 (1.0 mmol) in a freshly distilled 50 mL of dry dichloromethane
and 2 mL of dry DMF at room temperature under nitrogen atmosphere. The
reaction was monitored by TLC. After completion of the reaction, the solvent
was evaporated under reduced pressure and the residue purified by flash
column chromatography over silica gel. All new compounds exhibited spectral
data consistent with their structures. 5a: IR (CH2Cl2): 3064, 2929, 2871, 1710
1. Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic
Synthesis with Diazo Compounds from Cyclopropanes to Ylides; Wiley
Interscience: New York, 1998.
2. (a) Muthusamy, S.; Krishnamurthi, J.. In Topics in Hetereocyclic Chemistry;
Hassner, A., Ed.; Springer, 2008; Vol. 12, pp 147–192; (b) Mehta, G.;
Muthusamy, S. Tetrahedron 2002, 58, 9477; (c) Davies, H. M. L.; Beckwith, R.
E. J. Chem. Rev. 2003, 103, 2861; (d) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998,
98, 911; (e) Padwa, A.; Weingarten, M. D. Chem. Rev 1996, 96, 223; (f) Ye, T.;
McKervey, M. A. Chem. Rev 1994, 94, 1091; (g) Doyle, M. P. Chem. Rev. 1986, 86,
919.
1611, 1486, 1466, 1351, 1299, 1222, 1159, 1116, 1093, 1048, 732, 699 cmꢀ1 1H
.
NMR (200 MHz, CDCl3): d 1.58–1.48 (4H, m), 1.75–1.67 (4H, m), 2.75–2.70 (2H,
m), 3.33–3.27 (4H, m), 3.98–3.91 (2H, m), 4.84 (2H, s, OCH), 6.76 (2H, d,
J = 7.6 Hz), 7.02 (2H, t, J = 7.6 Hz), 7.32–7.25 (4H, m). 13C NMR (50.3 MHz,
CDCl3): d 24.7 (CH2), 25.4 (CH2), 39.5 (N–CH2), 63.9 (OCH2), 75.5 (OCH), 108.8
(CH), 122.9 (CH), 124.3 (quat-C), 125.9 (CH), 130.1 (CH), 143.6 (quat-C), 174.9
(C = O). MS: m/z = 406 (M+). Anal. Calcd for C24H26N2O4: C, 70.92; H, 6.45; N,
6.89. Found: C, 70.97; H, 6.38; N, 6.92. X-ray Crystal data for compound 5a.
3. For an excellent review on O–H insertion reactions: Miller, D. J.; Moody, C. J.
Tetrahedron 1995, 51, 10811.
4. (a) Liu, B.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 12616; (b) Maier,
T. C.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 4594; (c) Jiang, N.; Wang, J.; Chan, A.
S. C. Tetrahedron Lett. 2001, 42, 8511; (d) Cenini, S.; Cravotto, G.; Giovenzana, G.
B.; Palmisano, G.; Penoni, A.; Tollari, S. Tetrahedron Lett. 2002, 43, 3637; (e)
Jiang, N.; Wang, J.; Chan, A. S. C. Tetrahedron Lett. 2001, 42, 8511; (f) Creger, P. L.
J. Org. Chem. 1965, 30, 3610.
3
ꢀ
C24H26N2O4, M = 406.47, 0.30 ꢁ 0.24 ꢁ 0.12 mm , triclinic, P1, a = 7.8002(14) Å,
b = 11.382(2) Å, c = 12.097(2) Å,
a = 94.574(3)°, b = 90.416(3)°, c = 101.248(3)°,
V = 1049.7(3) Å3, T = 293(2) K, R1 = 0.0766, wR2 = 0.1927, on observed data,