Article
In conclusion, the major metabolites of naringenin chalcone
were tentatively identified as naringenin chalcone-20-O-β-
-glucuronide, naringenin-7-O-β- -glucuronide, and naringen-
in-40-O-β-
-glucuronide. These three metabolites were detected in
the urine, but only naringenin chalcone-20-O-β-
-glucuronide
was detected in the plasma. Naringenin chalcone-20-O-β-
-glucuronide inhibited histamine release, and this might con-
J. Agric. Food Chem., Vol. 57, No. 14, 2009 6437
(12) Saito, K.; Horie, M.; Nose, N.; Nakagomi, K.; Nakazawa, H. High-
performance liquid chromatography of histamine and 1-methylhis-
tamine with on-column fluorescence derivatization. J. Chromatogr.
1992, 595, 163–168.
(13) Abe, K.; Katayama, H.; Suzuki, A.; Yumioka, E. Biological fate of
orally administered naringin and naringenin in rats. Jpn. J. Pharma-
cogn. (Shoyakugaku Zasshi) 1993, 47, 402–407.
(14) Davis, B. D.; Needs, P. W.; Kroon, P. A.; Brodbelt, J. S. Identifica-
tion of isomeric flavonoid glucuronides in urine and plasma by metal
complexation and LC-ESI-MS/MS. J. Mass Spectrom. 2006, 41,
911–920.
D
D
D
D
D
tribute to the antiallergic activity of naringenin chalcone in vivo.
The bioavailability of naringenin chalcone must be studied to
confirm the mechanism of action.
(15) Kahle, K.; Kraus, M.; Scheppach, W.; Richling, E. Colonic avail-
ability of apple polyphenols;a study in ileostomy subjects. Mol.
Nutr. Food Res. 2005, 49, 1143–1150.
(16) Herles, C.; Braune, A.; Blaut, M. First bacterial chalcone isomerase
isolated from Eubacterium ramulus. Arch. Microbiol. 2004, 181,
428–434.
(17) Peng, H. W.; Cheng, F. C.; Huang, Y. T.; Chen, C. F.; Tsai, T. H.
Determination of naringenin and its glucuronide conjugate in rat
plasma and brain tissue by high-performance liquid chromatogra-
phy. J. Chromatogr., B. 1998, 714, 369–374.
(18) Piskula, M. K.; Terao, J. Accumulation of (-)-epicatechin metabo-
lites in rat plasma after oral administration and distribution of
conjugation enzymes in rat tissues. J. Nutr. 1998, 128, 1172–1178.
(19) O’Leary, K. A.; Day, A. J.; Needs, P. W.; Mellon, F. A.; O’Brien, N.
M.; Williamson, G. Metabolism of quercetin-7- and quercetin-3-
glucuronides by an in vitro hepatic model: the role of human β-
glucuronidase, sulfotransferase, catechol-O-methyltransferase and
multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem.
Pharmacol. 2003, 65, 479–491.
ABBREVIATIONS USED
HEPES, 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic
acid; HPLC, high-performance liquid chromatography; LC-
MS, liquid chromatography-mass spectrometry; NMR, nuclear
magnetic resonance; APCI, atmospheric pressure chemical ioni-
zation; SIM, selected ion monitoring mode; COSY, 1H-1H
correlation spectroscopy; HMQC, 1H-13C heteronuclear multi-
ple quantum coherence; HMBC, 1H-13C heteronuclear multiple
bond connectivity; SEM, standard error of the mean.
ACKNOWLEDGMENT
We acknowledge the advice of Dr. Taichi Yamamoto, Chil-
dren’s Hospital Oakland Research Institute, for this study. We
are grateful for the assistance of our laboratory staffs.
LITERATURE CITED
(20) Choudhury, R.; Chowrimootoo, G.; Srai, K.; Debnam, E.; Rice-
Evans, C. A. Interactions of the flavonoid naringenin in the gastro-
intestinal tract and the influence of glycosylation. Biochem. Biophys.
Res. Commun. 1999, 265, 410–415.
(21) El Mohsen, M. A.; Marks, J.; Kuhnle, G.; Rice-Evans, C.; Moore,
K.; Gibson, G.; Debnam, E.; Srai, S. K. The differential tissue
distribution of the citrus flavanone naringenin following gastric
instillation. Free Radical Res. 2004, 38, 1329–1340.
(22) Monge, P.; Solheim, E.; Scheline, R. R. Dihydrochalcone metabo-
lism in the rat: phloretin. Xenobiotica 1984, 14, 917–924.
(23) Yilmazer, M.; Stevens, J. F.; Deinzer, M. L.; Buhler, D. R. In vitro
biotransformation of xanthohumol, a flavonoid from hops (Humu-
lus lupulus), by rat liver microsomes. Drug Metab. Dispos. 2001, 29,
223–231.
(24) Nikolic, D.; Li, Y.; Chadwick, L. R.; Pauli, G. F.; Van Breemen, R.
B. Metabolism of xanthohumol and isoxanthohumol, prenylated
flavonoids from hops (Humulus lupulus L.), by human liver micro-
somes. J. Mass Spectrom. 2005, 40, 289–299.
(25) Schneider, H.; Blaut, M. Anaerobic degradation of flavonoids by
Eubacterium ramulus. Arch. Microbiol. 2000, 173, 71–75.
(26) Schoefer, L.; Mohan, R.; Schwiertz, A.; Braune, A.; Blaut, M.
Anaerobic degradation of flavonoids by Clostridium orbiscindens.
Appl. Environ. Microbiol. 2003, 69, 5849–5854.
(27) Shirai, M.; Yamanishi, R.; Moon, J. H.; Murota, K.; Terao, J. Effect
of quercetin and its conjugated metabolite on the hydrogen peroxide-
induced intracellular production of reactive oxygen species in mouse
fibroblasts. Biosci., Biotechnol., Biochem. 2002, 66, 1015–1021.
(28) Koga, T.; Meydani, M. Effect of plasma metabolites of (þ)-catechin
and quercetin on monocyte adhesion to human aortic endothelial
cells. Am. J. Clin. Nutr. 2001, 73, 941–948.
(29) Kawai, Y.; Nishikawa, T.; Shiba, Y.; Saito, S.; Murota, K.; Shibata,
N.; Kobayashi, M.; Kanayama, M.; Uchida, K.; Terao, J. Macro-
phage as a target of quercetin glucuronides in human atherosclerotic
arteries: implication in the anti-atherosclerotic mechanism of dietary
flavonoids. J. Biol. Chem. 2008, 283, 9424–9434.
(1) Hollman, P. C.; Katan, M. B. Dietary flavonoids: intake, health
effects and bioavailability. Food Chem. Toxicol. 1999, 37, 937–942.
(2) Hertog, M. G.; Feskens, E. J.; Hollman, P. C.; Katan, M. B.;
Kromhout, D. Dietary antioxidant flavonoids and risk of coronary
heart disease: the Zutphen Elderly Study. Lancet 1993, 342, 1007–
1011.
(3) Nahmias, Y.; Goldwasser, J.; Casali, M.; Van Poll, D.; Wakita, T.;
Chung, R. T.; Yarmush, M. L. Apolipoprotein B-dependent hepa-
titis C virus secretion is inhibited by the grapefruit flavonoid
naringenin. Hepatology 2008, 47, 1437–1445.
(4) Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C.
´ ´
Bioavailability and bioefficacy of polyphenols in humans. I. Review
of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S.
(5) Murota, K.; Terao, J. Antioxidative flavonoid quercetin: implication
of its intestinal absorption and metabolism. Arch. Biochem. Biophys.
2003, 417, 12–17.
(6) Kanaze, F. I.; Bounartzi, M. I.; Georgarakis, M.; Niopas, I.
Pharmacokinetics of the citrus flavanone aglycones hesperetin and
naringenin after single oral administration in human subjects. Eur. J.
Clin. Nutr. 2007, 61, 472–477.
(7) Bugianesi, R.; Catasta, G.; Spigno, P.; D’Uva, A.; Maiani, G.
Naringenin from cooked tomato paste is bioavailable in men. J.
Nutr. 2002, 132, 3349–3352.
(8) Mullen, W.; Edwards, C. A.; Crozier, A. Absorption, excretion and
metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-
conjugates of quercetin in human plasma and urine after ingestion of
onions. Br. J. Nutr. 2006, 96, 107–116.
(9) Yamamoto, T.; Yoshimura, M.; Yamaguchi, F.; Kouchi, T.; Tsuji,
R.; Saito, M.; Obata, A.; Kikuchi, M. Anti-allergic activity of
naringenin chalcone from a tomato skin extract. Biosci., Biotechnol.,
Biochem. 2004, 68, 1706–1711.
(10) Yoshimura, M.; Enomoto, T.; Dake, Y.; Okuno, Y.; Ikeda, H.;
Cheng, L.; Obata, A. An evaluation of the clinical efficacy of tomato
extract for perennial allergic rhinitis. Allergol. Int. 2007, 56, 225–230.
(11) Inoshiri, S.; Sasaki, M.; Hirai, Y.; Kohda, H.; Otsuka, H.; Yama-
saki, K. Inhibition of mast cell histamine release by 2,6-dimethoxy-
p-benzoquinone isolated from Berchemia racemosa. Chem. Pharm.
Bull. 1986, 34, 1333–1336.
Received April 6, 2009. Revised manuscript received June 11, 2009.
Accepted June 15, 2009.