Table 3. AgSbF6-Catalyzed Synthesis of 1,3-dienes 3 from Propargylic Alcohols 1a
a Conditions: 0.3 mmol of 1 with 10 mol % of catalyst in CH2Cl2 (2.0 mL) at 15 °C. b Isolated yield. c The reaction was carried out at 40 °C.
above conditions, as depicted in Table 2. Thus, a tandem
carbon-carbon and carbon-oxygen bond formation of
propargylic alcohols 1a-f and 1h-k proceeded smoothly to
provide corresponding products 2a-f and 2h-k in moderate
to excellent yields. The reaction works well with aromatic
R1 groups. Electron-withdrawing aryl groups showed better
results than those with an electron-rich group in this tandem
reaction (1b vs 1c). Substrate 1d with a heteroaromatic R1
group can also afford the desired product 2d in 73% yield,
while a substrate like 1g with an aliphatic R1 group gave no
reaction. Other substrates like 1h-k can also afford corre-
sponding furan derivatives 2h-k in moderate yield. Interest-
ingly, substrate like 1l with steric effects gave no reaction.
Furthermore, to expand the scope of this reaction, we
also investigated a range of propargylic alcohols; it was
found that under the silver catalyst some substrates 1
transferred into 1,3-dienes 3 directly, without giving the
products 2 as depicted in Table 3. Various representative
propargylic alcohols 1m-u transferred into corresponding
products 3m-u in moderate to excellent yields (up to
97%) (Figure 1).
(4) For selected papers, see: (a) Li, Z.; Capretto, D. A.; Rahaman, R.;
He, C. Angew. Chem., Int. Ed. 2007, 46, 5184. (b) Cui, Y.; He, C. Angew.
Chem., Int. Ed. 2004, 43, 4210. (c) Clark, T. B.; Woerpel, K. A. J. Am.
Chem. Soc. 2004, 126, 9522. (d) Cui, Y.; He, C. J. Am. Chem. Soc. 2003,
125, 16202. (e) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 4018. (f) Momiyama, N.; Yamamoto, H. J. Am.
Chem. Soc. 2003, 125, 6038. (g) Dias, H. V. R.; Browning, R. G.; Polach,
S. A.; Diyabalanage, H. V. K.; Lovely, C. J. J. Am. Chem. Soc. 2003, 125,
9270.
(5) For selected recent examples of Ag-catalyzed reviews, see: (a)
Yamamoto, Y. Chem. ReV. 2008, 108, 3199. (b) Weibel, J.-M.; Blanc, A.;
´
Pale, P. Chem. ReV. 2008, 108, 3149. (c) Alvarez-Corral, M.; Mun˜oz-
Dorado, M.; Rodr´ıguez-Garc´ıa, I. Chem. ReV. 2008, 108, 3174. (d) Li, Z.;
He, C. Eur. J. Org. Chem. 2006, 4313.
(6) For selected examples of Ag-catalyzed reactions, see: (a) Umeda,
R.; Studer, A. Org. Lett. 2008, 10, 993. (b) Mandai, H.; Mandai, K.; Snapper,
M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 17961. (c) Yong,
S. W.; Eom, J. I. J. Org. Chem. 2006, 71, 6705. (d) Yang, C.-G.; Reich,
N. W.; Shi, Z.; He, C. Org. Lett. 2005, 7, 4553. (e) Yao, X.; Li, C.-J. Org.
Lett. 2005, 7, 4395. (f) Patil, N. T.; Pahadi, N. K.; Yamamoto, Y. J. Org.
Chem. 2005, 70, 10096. (g) Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5,
4473.
Figure 1.
X-ray structure of 3q.8
To uncover the mechanism for the reaction, we started
out by using propargylic alcohol 1m under the standard
conditions, and the desired product 2m was isolated in 30%
(7) (a) Yao, X.; Li, C.-J. J. Org. Chem. 2005, 70, 5752. (b) Harrison,
T. J.; Dake, G. R. Org. Lett. 2004, 6, 5023. (c) Sweis, R. F.; Schramm,
M. P.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 7442.
3208
Org. Lett., Vol. 11, No. 15, 2009