Page 9 of 10
ACS Infectious Diseases
1
2
3
4
5
6
7
8
9
mediates an innate immune response to bacterial infection by seques-
trating iron. Nature 432, 917-921.
(33) Müller, S. I., Valdebenito M., and Hantke, K. (2009) Salmo-
chelin, the long-overlooked catecholate siderophore of Salmonella.
BioMetals 22, 691-695.
(51) Yu, X. L., Dai, Y. J., Yang, T., Gagné M. R., and Gong, H. G.
(2011) Facile synthesis of salmochelin S1, S2, MGE, DGE, and TGE.
Tetrahedron 67, 144-151.
(52) Pearlman W.M. (1967) Noble metal hydroxides on carbon
nonpyrophoric dry catalysts. Tetrahedron Lett. 8, 1663 —1664.
(53) Hirai, K., Aoyama, H., Suzue, S., Irikura, T., Iyobe S., and
Mitsuhashi, S. (1986) Isolation and characterization of norfloxacin-re-
sistant mutants of Escherichia coli K-12. Antimicrob. Agents
Chemother. 30, 248-253.
(54) Neves, P., Berkane, E., Gameiro, P., Winterhalter M., and de
Castro, B. (2005) Interaction between quinolones antibiotics and bac-
terial outer membrane porin OmpF. Biophys. Chem. 113, 123-128.
(55) Low, A. S., MacKenzie, F. M., Gould I. M., and Booth, I. R.
(2001) Protected environments allow parallel evolution of a bacterial
pathogen in a patient subjected to long‐term antibiotic therapy. Mol.
Microbiol. 42, 3, 619-630.
(34) Zhu, M., Valdebenito, M., Winkelmann G., and Hantke, K.
(2005) Functions of the siderophore esterases IroD and IroE in iron-
salmochelin utilization. Microbiology, 151, 7, 2363-2372.
(35) Crouch, M-L. V., Castor, M., Karlinsey, J. E., Kalhorn T., and
Fang, F. C. (2008) Biosynthesis and IroC-dependent export of the si-
derophore salmochelin are essential for virulence of Salmonella enter-
ica serovar Typhimurium. Mol. Microbiol. 67, 5, 971-983.
(36) Raymond, K. N., Dertz E. A., and Kim, S. S. (2003) Entero-
bactin: An archetype for microbial iron transport. Proc. Nat. Acad.
Sci. U. S. A. 100, 7, 3584-3588.
(37) Andrews, S. C., Robinson, A. K., and Rodríguez-Quiñones, F.
(2003) Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215-
237.
(38) Krewulak, K. D., and Vogel, H. J. (2008) Structural biology of
bacterial iron uptake. Biochim. Biophys. Acta, Biomembr. 1778, 9,
1781-1804.
(39) Chairatana, P., Zheng T., and Nolan, E. M. (2015) Targeting
virulence: salmochelin modification tunes the antibacterial activity
spectrum of β-lactams for pathogen-selective killing of Escherichia
coli. Chem. Sci. 6, 4458-4471.
(40) Md-Saleh, S. R., Chilvers, E. C., Kerr, K. G., Milner, S. J.,
Snelling, A. M, Weber, J. P., Thomas, G. H., Duhme-Klair A.-K., and
Routledge, A. (2009) Synthesis of citrate–ciprofloxacin conju-
gates.Bioorg. Med. Chem. Lett. 19, 1496-1498.
(41) Milner, S. J., Seve, A., Snelling, A. M., Thomas, G. H., Kerr,
K. G., Routledge, A., and Duhme-Klair, A-K. (2013) Staphyloferrin
A as siderophore-component in fluoroquinolone-based Trojan Horse
antibiotics. Org. Biomol. Chem., 11, 3461-3468.
(42) Milner, S. J., Snelling, A. M., Kerr, K. G., Abd-El-Aziz, A.,
Thomas, G. H., Hubbard, R. E., Routledge, A., and Duhme-Klair, A-
K. (2014) Probing linker design in citric acid–ciprofloxacin conju-
gates. Bioorg. Med. Chem. 22, 4499-4505
(43) Heinisch, L, Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs,
D., and Möllmann, U. (2002) Highly antibacterial active aminoacyl
penicillin conjugates with acylated bis-catecholate siderophores based
on secondary diamino acids and related compounds. J. Med. Chem.
45, 14, 3032-3040.
(44) Möllmann, U., Heinisch, L., Bauernfeind, A., Köhler, T., and
Ankel-Fuchs, D. (2009) Siderophores as drug delivery agents: appli-
cation of “Trojan Horse” strategy. BioMetals 22, 615-624.
(45) Raines, D. J., Moroz, O. V., Blagova, E. V., Turkenburg, J. P.,
Wilson, K. S., Duhme-Klair, A.-K. (2016) Bacteria in an intense com-
petition for iron: key component of the Campylobacter jejuni iron up-
take system scavenges enterobactin hydrolysis product. Proc. Natl.
Acad. Sci. U.S.A. 113, 5850-5855.
(46) Wilde, E. J., Blagova, E. V., Sanderson, T. J., Raines, D. J.,
Thomas, R. P., Routledge, A., Duhme-Klair, A.-K., Wilson, K. S.
(2019) Mimicking salmochelin S1 and the interactions of its Fe(III)
complex with periplasmic iron siderophore binding proteins CeuE and
VctP. J. Inorg. Biochem. 190, 75-84.
(47) Turel, I. (2002) The interactions of metal ions with quinolone
antibacterial agents. Coord. Chem. Rev. 232, 1-2, 27-47.
(48) Uivarosi, V. (2013) Metal complexes of quinolone antibiotics
and their applications: an update. Molecules 18, 9, 11153-11197.
(49) Joshua, A. V., Sharma, S. K., and Abrams, D. N. (2008) New
short synthesis of (5)‐2,3‐dimethoxy‐N‐[(1‐ethyl‐2‐pyrrolidinyl)me-
thyl]‐5‐iodobenzamide: dopamine D2 receptor. Synth. Commun. 38,
434-440.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(56) Vinué, L., Corcoran, M. A., Hooper D. C., and Jacoby, G. A.
(2016) Mutations that enhance the ciprofloxacin resistance of Esche-
richia coli with qnrA1. Antimicrob. Agents Chemother. 60, 3, 1537-
1545.
(57) Prajapati, J. D., Solano, C. J. F., Winterhalter M., and
Kleinekathöfer, U. (2017) Characterization of ciprofloxacin permea-
tion pathways across the porin OmpC using metadynamics and a
string method. J. Chem. Theory Comput. 13, 4553-4566.
(58) Nikaido, H. (1994) Porins and specific diffusion channels in
bacterial outer membranes. J. Biol. Chem. 269, 6, 3905-3908.
(59) Delcour, A. H. (2009) Outer membrane permeability and anti-
biotic resistance. Biochim. Biophys. Acta, 1794, 808-816.
(60) Calculated using LLAMA software package: Colomer, I.,
Empson, C. J., Craven, P., Owen, Z., Doveston, R. G. Churcher, I.
Marsden, S. P. (2016) A divergent synthetic approach to diverse mo-
lecular scaffolds: assessment of lead-likeness using LLAMA, an
open-access computational tool. Chem. Commun. 52, 7209-7212.
(61) Palm, K., Sternberg, P., Luthman K., and Artursson, P. (1997)
Polar molecular surface properties predict the intestinal absorption of
drugs in humans. Pharm. Res. 14, 568-571.
(62) Neidhardt, F. C., Bloch P. L., and Smith, D. F. (1974) Culture
medium for Enterobacteria. J. Bacteriol. 119, 3, 736-747.
(63) Emery, T., and Hoffer, P. B. (1980) Siderophore-mediated
mechanism of gallium uptake demonstrated in the microorganism Us-
tilago sphaerogena. J. Nucl. Med. 21, 935-939.
(64) Clarke, T. E., Braun, V., Winkelmann, G., Tari L. W., and Vo-
gel, J. H. (2002) X-ray crystallographic structures of the Escherichia
coli periplasmic protein FhuD bound to hydroxamate-type sidero-
phores and the antibiotic albomycin. J. Biol. Chem. 277, 13966-
13972.
(65) Kelson, A. B., Carnevali, M., and Truong-Le, V. (2013) Gal-
lium-based anti-infectives: targeting microbial iron-uptake mecha-
nisms. Curr. Opin. Pharmacol. 13, 707-716.
(66) Petrik, M., Haas, H., Dobrozemsky, G., Lass-Flörl, C., Hel-
bok, A., Blatzer, M., Dietrich H., and Decristoforo, C. (2010) 68Ga-Si-
derophores for PET imaging of invasive pulmonary aspergillosis:
proof of principle. J. Nucl. Med. 51, 4, 639-645.
(67) Beasley, F. C., and Heinrichs, D. E. (2010) Siderophore-medi-
ated iron acquisition in the staphylococci. J. Inorg. Biochem. 104, 3,
282-288.
(68) Ioppolo, J. A., Caldwell, D., Beiraghi, O., Llano, L., Blacker,
M., Valliant, J. F., and Berti, P. J. (2017) 67Ga-labeled deferoxamine
derivatives for imaging bacterial infection: Preparation and screening
of functionalized siderophore complexes. Nucl. Med. Biol. 52, 32-41.
(69) Balbontín, R., Villagra, N., de la Gándara, M. P., Mora, G.,
Figueroa-Bossi, N., and Bossi, L. (2016) Expression of IroN, the
salmochelin siderophore receptor requires mRNA activation by
RyhB small RNA homologues. Mol. Microbiol. 100, 1, 139-155.
(50) Gong, H. G, and Gagné, M. R. (2008) Diastereoselective Ni-
catalyzed Negishi cross-coupling approach to saturated, fully oxygen-
ated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 130, 12177-
12183.
ACS Paragon Plus Environment