LETTER
A Simple Synthesis of Imide-Dipeptides
1509
(3) (a) Zhao, X.; Chang, Y.-L.; Fowler, F. W.; Lauher, J. W.
J. Am. Chem. Soc. 1990, 112, 6627. (b) Cbang, Y.-L.;West,
M.-A.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 1993,
115, 5991. (c) Zhang, X.; Rodrigues, J.; Evans, L.; Hinkle,
B.; Ballantyne, L.; Pena, M. J. Org. Chem. 1997, 62, 6420.
(d) Page, P.; Bradley, M.; Walters, I.; Teague, S. J. Org.
Chem. 1999, 64, 794. (e) Dales, N. A.; Bohacek, R. S.;
Satyshur, K. A.; Rich, D. H. Org. Lett. 2001, 3, 2313.
(f) Moriuchi, T.; Tamura, T.; Hirao, T. J. Am. Chem. Soc.
2002, 124, 9356. (g) Slater, M. J.; Amphlett, E. M.;
Andrews, D. M.; Bamborough, P.; Carey, S. J.; Johnson,
M. R.; Jones, P. S.; Mills, G.; Parry, N. R.; Somers, D. O’N.;
Stewart, A. J.; Skarzynski, T. Org. Lett. 2003, 5, 4627.
(h) Walther, T.; Arndt, H.-D.; Waldmann, H. Org. Lett.
2008, 10, 3199.
(4) (a) Rochon, F. D.; Kong, P. C.; Melanson, R. Inorg. Chem.
1990, 29, 2708. (b) Etter, M. C.; Reutzel, S. M. J. Am.
Chem. Soc. 1991, 113, 2586. (c) Reutzel, S. M.; Etter, M. C.
J. Phys. Org. Chem. 1992, 5, 44. (d) Nguyen, M. T.;
Leroux, N.; Zeegers-Huyskens, T. J. Chem. Soc., Faraday
Trans. 1997, 93, 33.
(5) (a) Maruyama, H. B.; Suhara, Y.; Suzuki-Watanabe, J.;
Maeshima, Y.; Shimizu, N.; Ogura-Hamada, M.; Fujimoto,
H.; Takano, K. J. Antibiot. 1975, 28, 636. (b) Suhara, Y.;
Maruyama, H. B.; Kotoh, Y.; Miyasaka, Y.; Yokose, K.;
Shirai, H.; Takano, K. J. Antibiot. 1975, 28, 648.
(6) Avidsoann, D.; Ovro, H. J. Am. Chem. Soc. 1957, 80, 376.
(7) Dai, J.; Day, C. S.; Noftle, R. E. Tetrahedron 2003, 59, 9389.
(8) Li, X.; Zhan, C.; Wang, Y.; Yao, J. Chem. Commun. 2008,
2444.
(9) Nicolaou, K. C.; Mathison, C. J. N. Angew. Chem. Int. Ed.
2005, 44, 5992.
(10) Evans, D. A.; Nagorny, P.; Xu, R. Org. Lett. 2006, 8, 5669.
(11) Wang, L.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Eur. J. 2008,
14, 10722.
(12) Pistia-Brueggeman, G.; Hollingsworth, R. I. Carbohydr.
Res. 2003, 338, 455.
(13) A Typical Procedure to Synthesize the Imide-dipeptides
The amide (1.1 mmol) of an N-Boc-L-amino acid was
dissolved in distilled THF (10 mL). Then, n-BuLi (1.1 equiv,
1.5 mM in hexane) was added at –76 °C. One hour later, the
reaction mixture was injected into 4-nitrophenyl N-Boc-L-
amino acid ester (1.0 mmol) in distilled THF (10 mL) and
stirred overnight at r.t. The mixture was then refluxed for
another 3 h. After removal of solvents, the residue was
applied to chromatography to yield desired imide-dipeptides
as a white solid.
54.0, 40.7, 28.4, 24.9, 23.3, 21.5 ppm. ESI-MS: m/z = 443,
466 [+ Na+].
Imide-dipeptide (1c)
After removal of solvents, the residue was applied to
chromatography by using PE–EtOAc (5:1) as eluents to
yield 1c as a white solid (290 mg, 0.65 mmol, 65%, Rf = 0.2).
1H NMR (400 MHz, CDCl3): d = 9.13 (s, 1 H, imide NH),
7.19–7.16 (m, 6 H, phenyl H, 3J = 6.0 Hz), 7.01–7.00 (d, 4
H, phenyl H, 3J = 6.4 Hz), 4.94 (d, 2 H, carbamate NH, 3J =
8.0 Hz), 4.57 (q, 2 H, a-protons, 3J = 8.2 Hz), 3.01 (d, 4 H,
BnCH2, 3J = 6.0 Hz), 1.45 (s, 18 H, Boc H) ppm. 13C NMR
(100 MHz, CDCl3): d = 174.0, 156.0, 139.5, 128.7, 127.6,
126.2, 80.6, 54.5, 37.8, 28.4 ppm. ESI-MS: m/z = 511, 534
[+ Na+].
Imide-dipeptide (1d)
After removal of solvents, the residue was applied to
chromatography by using PE–EtOAc (3:1) as eluents to
yield 1d as a white solid (400 mg, 0.54 mmol, 54%, Rf = 0.2).
1H NMR (400 MHz, CDCl3): d = 8.96 (s, 1 H, imide NH),
7.35–7.26 (m, 10 H, phenyl H, 3J = 6.0 Hz), 5.15 (s, 2 H, Cbz
NH), 5.06 (s, 4 H, BnCH2), 4.95 (s, 2 H, carbamate NH),
4.30 (m, 2 H, a-protons, 3J = 8.0 Hz), 3.11 (m, 4 H, CH2,
3J = 6.0 Hz), 1.79 (br s, 2 H, CH2), 1.65 (m, 2 H, CH2, 3J =
7.9 Hz), 1.47–1.32 (m, 8 H, CH2, 3J = 7.4 Hz), 1.45 (s, 18 H,
Boc H) ppm. 13C NMR (100 MHz, CDCl3): d = 173.9, 156.0,
141.1, 128.6, 128.2, 80.6, 66.6, 53.4, 41.0, 32.0, 29.4, 28.4,
22.5 ppm. ESI-MS: m/z = 741, 764 [+ Na+].
Imide-dipeptide (1e)
After removal of solvents, the residue was applied to
chromatography by using PE–EtOAc (4:1) as eluents to
yield 1e as a white solid (430 mg, 0.68 mmol, 68%, Rf = 0.2).
1H NMR (400 MHz, CDCl3, 10 mM): d = 9.09 (s, 1 H, imide
NH), 7.29–7.13 (m, 10 H, phenyl H), 5.22 (s, 1 H, Cbz NH),
5.06 (m, 1 H, carbamate NH, overlapping, 3J = 7.2 Hz), 5.03
(s, 2 H, BnCH2), 4.91 (s, 1 H, carbamate NH), 4.73 and 4.67
(br s, 1 H, a-protons), 4.46 (br s, 1 H, a-protons), 3.11 (s, 2
H, CH2), 3.11 (br s, 1 H, BnCH2, overlapping), 2.85 (br s, 1
H, BnCH2), 1.74 (br s, 2 H, CH2), 1.47 (m, 4 H, CH2, 3J = 6.4
Hz), 1.29 and 1.20 (s, 18 H, Boc H) ppm.13C NMR (100
MHz, CDCl3): d = 172.7, 171.9, 156.7, 155.9, 155.4, 136.5,
135.8, 129.4, 128.6, 128.5, 128.1, 127.1, 80.4, 66.7, 56.3,
55.1, 40.1, 37.5, 31.0, 29.2, 28.3, 22.4 ppm. ESI-MS: m/z =
626, 749 [+ Na+].
Imide-dipeptide (1f)
After removal of solvents, the residue was applied to
chromatography by using PE–EtOAc (5:1) as eluents to
yield 1f as a white solid (290 mg and 310 mg, 0.56 mmol and
0.60 mmol, 56% and 60%, Rf = 0.2). 1H NMR (400 MHz,
CDCl3): d = 8.89–8.82 (d, 1 H, imide NH), 7.35–7.17 (m, 10
H, phenyl H), 5.29 (s, 1 H, Cbz NH), 5.05 (s, 2 H, BnCH2),
5.00 (d, 1 H, carbamate NH, 3J = 8.4 Hz), 5.00 (m, 1 H, a-
protons, overlapping), 4.57 (m, 1 H, a-protons, 3J = 8.2 Hz),
3.11 (m, 1 H, BnCH2), 2.85 (m, 1 H, BnCH2), 1.74–1.60 (m,
2 H, b-H of Leu, 3J = 5–7 Hz), 1.47–1.40 (m, 1 H, g-H of
Leu, 3J = 4.8 Hz), 1.45 (s, 9 H, Boc H), 0.98–0.88 (q, 6 H,
d-H of Leu, 3J = 6.5, 5.2 Hz) ppm. 13C NMR (100 MHz,
CDCl3): d = 174.0, 173.3, 156.2, 156.0, 141.1, 140.3, 129.5,
128.7, 128.6, 128.5, 128.2, 127.1, 80.6, 66.0, 54.9, 54.0,
40.7, 37.8, 28.4, 24.9, 23.3, 22.2 ppm. ESI-MS: m/z = 511,
534 [+ Na+].
Imide-dipeptide (1a)
After removal of solvents, the residue was applied to
chromatography by using PE–EtOAc (4:1) as eluents to
yield 1a as a white solid (200 mg, 0.56 mmol, 56%, Rf = 0.2).
1H NMR (400 MHz, CDCl3, 16.7 mM): d = 9.21 (s, 1 H,
imide NH), 5.02 (d, 2 H, carbamate NH, 3J = 6.7 Hz), 4.57–
4.52 (m, 2 H, a-proton, 3JHNa= 8.0 Hz), 1.45 (s, 18 H, Boc
H), 1.27 (t, 6 H, b-H of Ala, 3J = 6.8 Hz) ppm. 13C NMR (100
MHz, CDCl3): d = 171.9, 154.5, 98.6, 79.6, 27.2, 16.5 ppm.
ESI-MS: m/z = 359, 382 [+ Na+].
Imide-dipeptide (1b)
After removal of solvents, the residue was applied to
chromatography by using PE–EtOAc (3:1) as eluents to
yield 1b as a white solid (300 mg, 0.68 mmol, 68%, Rf = 0.2).
1H NMR (400 MHz, CDCl3, 10 mM): d = 9.02 (s, 1 H, imide
NH), 4.89 (d, 2 H, carbamate NH, 3J = 7.7 Hz), 4.57 (br s, 2
H, a-protons), 1.74–1.60 (m, 4 H, b-H of Leu, 3J = 5–7 Hz),
1.47–1.40 (m, 2 H, g-H of Leu, 3J = 4.8 Hz), 1.45 (s, 18 H,
Boc H), 0.98–0.94 (q, 12 H, d-H of Leu, 3J = 6.5, 5.2 Hz)
ppm. 13C NMR (100 MHz, CDCl3): d = 173.3, 156.0, 80.6,
(14) Typical Procedure for the Synthesis of 4-Nitrophenyl N-
Boc-L-alanine Ester and N-Boc-L-alanine Amide
N-Boc-L-alanine Acid
L-Alanine (4.5g, 50 mmol) and KOH (3.8 g, 55 mmol) were
dissolved in a mixture of H2O (200 mL) and THF (20 mL).
Then, di-tert-butyl-dicarbonate (13.0 g, 55 mmol) was
added. The resultant solution was allowed to react at 50 °C
Synlett 2009, No. 9, 1506–1510 © Thieme Stuttgart · New York