4772 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 15
Nuti et al.
(28) Tuccinardi, T.; Martinelli, A.; Nuti, E.; Carelli, P.; Balzano, F.;
Uccello-Barretta, G.; Murphy, G.; Rossello, A. Amber force
field implementation, molecular modelling study, synthesis and
MMP-1/MMP-2 inhibition profile of (R)- and (S)-N-hydroxy-
2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutana-
mides. Bioorg. Med. Chem. 2006, 14, 4260–4276.
(29) Neumann, U.; Kubota, H.; Frei, K.; Ganu, V.; Leppert, D.
Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-
NH2, a fluorogenic substrate with increased specificity constants
for collagenases and tumor necrosis factor converting enzyme.
Anal. Biochem. 2004, 328, 166–173.
(46) Solomon, A.; Rosenblum, G.; Gonzales, P. E.; Leonard, J. D.;
Mobashery, S.; Milla, M. E.; Sagi, I. Pronounced diversity in
electronic and chemical properties between the catalytic zinc sites
of tumor necrosis factor-alpha-converting enzyme and matrix
metalloproteinases despite their high structural similarity. J. Biol.
Chem. 2004, 279, 31646–31654.
(47) Kevorkian, L.; Young, D. A.; Darrah, C.; Donell, S. T.;
Shepstone, L.; Porter, S.; Brockbank, S. M.; Edwards, D. R.;
Parker, A. E.; Clark, I. M. Expression profiling of metallopro-
teinases and their inhibitors in cartilage. Arthritis Rheum. 2004, 50,
131–141.
(30) Rossello, A.; Nuti, E.; Carelli, P.; Orlandini, E.; Macchia, M.;
Nencetti, S.; Zandomeneghi, M.; Balzano, F.; Uccello Barretta, G.;
Albini, A.; Benelli, R.; Cercignani, G.; Murphy, G.; Balsamo, A.
N-i-Propoxy-N-biphenylsulfonylaminobutylhydroxamic acids as
potent and selective inhibitors of MMP-2 and MT1-MMP. Bioorg.
Med. Chem. Lett. 2005, 15, 1321–1326.
(31) Ikejiri, M.; Bernardo, M. M.; Bonfil, R. D.; Toth, M.; Chang, M.;
Fridman, R.; Mobashery, S. Potent mechanism-based inhibitors
for matrix metalloproteinases. J. Biol. Chem. 2005, 280, 33992–
34002.
(48) Itoh, T.; Matsuda, H.; Tanioka, M.; Kuwabara, K.; Itohara, S.;
Suzuki, R. The role of matrix metealloproteinase-2 and matrix
metalloproteinase-9 in antibody induced arthritis. J. Immunol.
2002, 169, 2643–2647.
(49) Knight, C. G.; Willenbrock, F.; Murphy, G. A novel coumarin-
labelled peptide for sensitive continuous assays of the matrix
metalloproteinases. FEBS Lett. 1992, 296, 263–266.
(50) SoftMax Pro 4.7.1 by Molecular Devices.
(51) GraFit version 4 by Erithecus Software.
(52) Welgus, H. G.; Jeffrey, J. J.; Eisen, A. Z. Human skin fibroblast
collagenase. Assessment of activation energy and deuterium iso-
tope effect with collagenous substrates. J. Biol. Chem. 1981, 256,
9516–9521.
(32) Duggleby, R. G.; Attwood, P. V.; Wallace, J. C.; Keech, D. B.
Avidin is a slow binding inhibitor of pyruvate carboxylase. Bio-
chemistry 1982, 21, 3364–3370.
(33) Cawston, T.; Plumpton, T.; Curry, V.; Ellis, A.; Powell, L. Role of
TIMP and MMP inhibition in preventing connective tissue break-
down. Ann. N.Y. Acad. Sci. 1994, 732, 75–83.
(34) Gendron, C.; Kashiwagi, M.; Hughes, C.; Caterson, B.; Nagase, H.
TIMP-3 inhibits aggrecanase-mediated glycosaminoglycan release
from cartilage explants stimulated by catabolic factors. FEBS Lett.
2003, 555, 431–436.
(35) Jozic, D.; Bourenkov, G.; Lim, N. H.; Visse, R.; Nagase, H.; Bode,
W.; Maskos, K. X-ray structure of human proMMP-1: new in-
sights into procollagenase activation and collagen binding. J. Biol.
Chem. 2005, 280, 9578–9585.
(36) Iyer, S.; Visse, R.; Nagase, H.; Acharya, K. R. Crystal structure of
an active form of human MMP-1. J. Mol. Biol. 2006, 362, 78–88.
(37) Iyer, S.; Wei, S.; Brew, K.; Acharya, K. R. Crystal structure of the
catalytic domain of matrix metalloproteinase-1 in complex with the
inhibitory domain of tissue inhibitor of metalloproteinase-1.
J. Biol. Chem. 2007, 282, 364–371.
(53) Bergman, I.; Loxley, R. Lung tissue hydrolysates: studies of the
optimum conditions for the spectrophotometric determination of
hydroxyproline. Analyst 1969, 94, 575–584.
(54) Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A semi-
empirical free energy force field with charge-based desolvation.
J. Comput. Chem. 2007, 28, 1145–1152.
(55) Schuttelkopf, A. W.; van Aalten, D. M. PRODRG: a tool for
high-throughput crystallography of protein-ligand complexes.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 1355–
1363.
(56) Cross, J. B.; Duca, J. S.; Kaminski, J. J.; Madison, V. S. The
Active Site of a Zinc-Dependent Metalloproteinase Influences the
Computed pKa of Ligands Coordinated to the Catalytic Zinc Ion.
J. Am. Chem. Soc. 2002, 124, 11004–11007.
(57) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi,
J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian,
H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.;
Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D.
K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.;
Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara,
A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian,
Inc.: Pittsburgh, PA, 2003.
(38) Spurlino, J. C.; Smallwood, A. M.; Carlton, D. D.; Banks, T. M.;
Vavra, K. J.; Johnson, J. S.; Cook, E. R.; Falvo, J.; Wahl, R. C.;
Pulvino, T. A.; Wendoloski, J. J.; Smith, D. L. 1.56 A Structure of
mature truncated human fibroblast collagenase. Proteins. 1994, 19,
98–109.
(39) Borkakoti, N.; Winkler, F. K.; Williams, D. H.; D0Arcy, A.;
Broadhurst, M. J.; Brown, P. A.; Johnson, W. H.; Murray,
E. J. Structure of the catalytic domain of human fibroblast
collagenase complexed with an inhibitor. Nat. Struct. Biol. 1994,
1, 106–110.
(40) Bender, S. L.; Broka, C. A.; Campbell, J. A.; Castelhano, A. L.;
Fisher, L. E.; Hendricks, R. T.; Sarma, K. Preparation of
arylthioalkanoates and analogs as matrix metalloprotease inhibi-
tors. Patent EP 780386 A1 19970625, 1997.
(41) Mazzola, R. D., Jr.; Zhu, Z.; Sinning, L.; McKittrick, B.; Lavey, B.;
Spitler, J.; Kozlowski, J.; Neng-Yang, S.; Zhou, G.; Guo, Z.; Orth,
P.; Madison, V.; Sun, J.; Lundell, D.; Niu, X. Discovery of novel
hydroxamates as highly potent tumor necrosis factor-alpha con-
verting enzyme inhibitors. Part II: Optimization of the S30 pocket.
Bioorg. Med. Chem. Lett. 2008, 18, 5809–5814.
(58) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A well-
behaved electrostatic potential based method using charge re-
straints for determining atom-centered charges: the RESP model.
J. Phys. Chem. 1993, 97, 10269–10280.
(42) Condon, J. S.; Joseph-McCarthy, D.; Levin, J. I.; Lombart, H. G.;
Lovering, F. E.; Sun, L.; Wang, W.; Xu, W.; Zhang, Y. Identifica-
tion of potent and selective TACE inhibitors via the S1 pocket.
Bioorg. Med. Chem. Lett. 2007, 17, 34–39.
(43) Govinda Rao, B.; Bandarage, U. K.; Wang, T.; Come, J. H.;
Perola, E.; Wei, Y.; Tian, S. K.; Saunders, J. O. Novel thiol-based
TACE inhibitors: rational design, synthesis, and SAR of thiol-
containing aryl sulfonamides. Bioorg. Med. Chem. Lett. 2007, 17,
2250–2253.
(59) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Kollman, P. A. Applica-
tion of RESP charges to calculate conformational energies, hydro-
gen bond energies, and free energies of solvation. J. Am. Chem. Soc.
1993, 115, 9620–9631.
(60) Cheng, F.; Zhang, R.; Luo, X.; Shen, J.; Li, X.; Gu, J.; Zhu, W.;
Shen, J.; Sagi, I.; Ji, R.; Chen, K.; Jiang, H. Quantum Chemistry
Study on the Interaction of the Exogenous Ligands and the
Catalytic Zinc Ion in Matrix Metalloproteinases. J. Phys. Chem.
B 2002, 106, 4552–4559.
(44) Fernandez-Catalan, C.; Bode, W.; Huber, R.; Turk, D.; Calvete,
J. J.; Lichte, A.; Tschesche, H.; Maskos, K. Crystal structure of the
complex formed by the membrane type 1-matrix metalloproteinase
with the tissue inhibitor of metalloproteinases-2, the soluble pro-
gelatinase A receptor. EMBO J. 1998, 17, 5238–48.
(45) Maskos, K.; Fernandez-Catalan, C.; Huber, R.; Bourenkov, G. P.;
Bartunik, H.; Ellestad, G. A.; Reddy, P.; Wolfson, M. F.; Rauch,
C. T.; Castner, B. J.; Davis, R.; Clarke, H. R.; Petersen, M.;
Fitzner, J. N.; Cerretti, D. P.; March, C. J.; Paxton, R. J.; Black,
R. A.; Bode, W. Crystal structure of the catalytic domain of human
tumor necrosis factor-alpha-converting enzyme. Proc. Natl. Acad.
Sci. U.S.A. 1998, 95, 3408–3412.
(61) Case, D. A.; Darden, T. E.; Cheatham, T. E. I.; Simmerling, C. L.;
Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman,
D. A.; Crowley, M.; Brozell, S.; Tsui, V.; Gohlke, H.; Mongan, J.;
Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.; Caldwell, J. W.;
Ross, W. S.; Kollman, P. A. AMBER 9; University of California: San
Francisco, 2006.
(62) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J.; Klein, M. L.
J. Chem. Phys. 1983, 79, 926–935.
(63) (a) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An W
log(N) method for Ewald sums in large systems. J. Chem. Phys.
1993, 98, 10089–10092. (b) Essmann, U.; Perera, L.; Berkowitz, M. L.;
Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald