C O M M U N I C A T I O N S
Scheme 2a
such as CHCl3, CH2Cl2, and toluene as well as polar solvents, such
as THF, acetone, etc. 1H NMR spectrum consists of only six peaks
(δ 8.60, 8.44, 8.04, 7.97, 7.68, 7.56 in CD2Cl2/CS2 ) 1/1). The
structure of 2 was also supported by 2D NMR (COSY, NOESY,
HMQC, and HMBC), IR, and HRMS. The structural optimization
of 11a,b and 2 using molecular orbital calculation (B3LYP/6-
31G(d,p)) showed the deeper bowl depth and POAV. The estimated
bowl depth and POAV for 2 reach 1.37 Å at carbon S and 10.75°
at hub carbon T (Scheme 1),14 which are comparable to the
corresponding values in hemifullerene.18 Accordingly, bowl inver-
sion is unlikely to occur with 2.19
In conclusion, the short step synthesis (only three steps from 1)
of highly strained naphtosumanenes was successfully achieved
through a nonpyrolytic approach. It should be noted that the
annulation reaction proceeds in quite high yield. This strategy will
allow the facile synthesis of various highly strained π-bowls.
Acknowledgment. The authors deeply thank Ms. Toshiko
Muneishi for the measurement of NMR spectra. This work was
financially supported in part by a Grant-in-Aid for Young Scientists
(B) from Japan Society for the Promotion of Science.
Supporting Information Available: Experimental details, spectral
data for 2, 3, and 5-11. This material is available free of charge via
References
(1) (a) Rabideau, P. W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235. (b)
Petrukhina, M. A.; Scott, L. T. Dalton Trans. 2005, 2969. (c) Wu, Y.-T.;
Siegel, J. S. Chem. ReV. 2006, 106, 4843.
(2) Jackson, E. A.; Steinberg, B. D.; Bancu, M.; Wakamiya, A.; Scott, L. T.
J. Am. Chem. Soc. 2007, 129, 484.
(3) Tsefrikas, V. M.; Scott, L. T. Chem. ReV. 2006, 106, 4868.
(4) (a) Abdourazak, A. H.; Marcinow, Z.; Sygula, A.; Sygula, R.; Rabideau,
P. W. J. Am. Chem. Soc. 1995, 117, 6410. (b) Hagen, S.; Bratcher, M. S.;
Erickson, M. S.; Zimmermann, G.; Scott, L. T. Angew. Chem., Int. Ed.
1997, 36, 406. (c) Mehta, G.; Panda, G.; Sarma, P. V. V. S. Tetrahedron
Lett. 1998, 39, 5835.
(5) (a) Scott, L. T.; Bratcher, M. S.; Hagen, S. J. Am. Chem. Soc. 1996, 118,
8743. (b) Ansems, R. B. M.; Scott, L. T. J. Am. Chem. Soc. 2000, 122,
2719.
(6) Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank,
J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500.
(7) Sakurai, H.; Daiko, T.; Hirao, T. Science 2003, 301, 1878.
(8) Sakurai, H.; Daiko, T.; Sakane, H.; Amaya, T.; Hirao, T. J. Am. Chem.
Soc. 2005, 127, 11580.
(9) Amaya, T.; Sakane, H.; Muneishi, T.; Hirao, T. Chem. Commun. 2008,
765.
(10) Amaya, T.; Mori, K.; Wu, H.-L.; Ishida, S.; Nakamura, J.; Murata, K.;
Hirao, T. Chem. Commun. 2007, 1902.
(11) (a) Amaya, T.; Sakane, H.; Hirao, T. Angew. Chem., Int. Ed. 2007, 46,
8376. (b) Sakane, H.; Amaya, T.; Moriuchi, T.; Hirao, T. Angew. Chem.,
Int. Ed. 2009, 48, 1640.
a Reagents and conditions: (I) (a) 2-formylphenylboronic acid, Pd2(dba)3,
t-Bu3P, Cs2CO3, dioxane, 80 °C, 24 h; (b) KN(SiMe3)2, THF-d8, <-80 °C
to rt, 1 h; (c) t-BuLi, THF-d8, <-80 °C to rt, 1 h, then excess CH3OD,
<-80 to -40 °C. (II) (d) Br2, CHCl3/CH3CN ) 4/1, 60 °C, 4.5 h; (e)
2-formylphenylboronic acid, Pd2(dba)3, t-Bu3P, Cs2CO3, dioxane, 80 °C,
24 h, 9a/9b ) 1/1.2, 10a/10b ) 1/5. (f) KN(SiMe3)2, THF-d8, <-80 °C to
rt, 1 h, 11a/11b ) 1/1.2. (g) KN(SiMe3)2, THF-d8, <-80 °C to rt, 1 h.
(12) Amaya, T.; Seki, S.; Moriuchi, T.; Nakamoto, K.; Nakata, T.; Sakane, H.;
Saeki, A.; Tagawa, S.; Hirao, T. J. Am. Chem. Soc. 2009, 131, 408.
(13) The POAV angle is widely used to gauge the curvature of a given center
in bowls: Haddon, R. C. J. Am. Chem. Soc. 1987, 109, 1676.
(14) The details for the bowl depth and POAV are shown in Figure S1c.
(15) Calculated from the crystal structure of 1.
(16) Bowl-to-bowl inversion between 7a and 7b.
be rationalized from the HOMO density of monobromide 4 and
dibromides 8, as shown in Figure S4a and S4b, respectively.
Annulation reaction of 9a,b was carried out using KN(SiMe3)2
to give dinaphtosumanene 11a,b (C35H16) almost quantitatively
(11a/11b ) 1/1.2) (Scheme 2II). For triannulation, the reaction of
10a proceeded well to afford the desired 2 (C42H18) in almost
quantitative yield based on C3 symmetric tribromide 3a, where the
corresponding dibenzannulated monoaldehyde from 10b was also
observed from the EI-MS analysis. Compensating for the strain
energy by the aromatization is likely to make the annulation reaction
proceed efficiently. The solubility of 2 is low in various solvents,
(17) Determined by 1H NMR.
(18) Bowl depth and POAV are 1.39 Å and 10.83°, which are determined from
the reported crystal structure. Petrukhina, M. A.; Andreini, K. W.; Peng,
L.; Scott, L. T. Angew. Chem., Int. Ed. 2004, 43, 5477.
(19) Estimated to be 63.8 kcal/mol by the DFT calculation (B3LYP/6-
311+G(2d,p)//B3LYP/6-31G(d,p); see Figure S3).
JA9031693
9
J. AM. CHEM. SOC. VOL. 131, NO. 31, 2009 10811