Page 5 of 6
Journal of the American Chemical Society
(5) (a) Hotha, S.; Kashyap, S. Propargyl Glycosides as Stable Glycosyl
ACKNOWLEDGMENT
Donors: Anomeric Activation and Glycoside Syntheses. J. Am. Chem.
Soc. 2006, 128, 9620−9621. (b) Chen, X.; Shen, D.; Wang, Q.; Yang,
Y.; Yu, B. ortho-(Methyltosylaminoethynyl)benzyl Glycosides as
New Glycosyl Donors for Latent-Active Glycosylation. Chem.
Commun. 2015, 51, 13957−13960. (c) Hu, Y.; Yu, K.; Shi, L.-L.; Liu,
L.; Sui, J. -J.; Liu, D. -Y.; Xiong, B.; Sun, J. -S. o-(p-
1
2
3
4
5
6
7
8
Financial support from the National Key Research & Development
Program of China (2018YFA0507602), National Natural Science
Foundation of China (21432012, 21871290, and 21621002),
Strategic Priority Research Program of CAS (XDB20020000), K.
C. Wong Education Foundation, Shanghai Sailing Program
(17YF1424000), and China Postdoctoral Science Foundation
(2017LH038) is acknowledged.
Methoxyphenylethynyl)phenyl
Glycosides:
Versatile
New
Glycosylation Donors for the Highly Efficient Construction of
Glycosidic Linkages. J. Am. Chem. Soc. 2017, 139, 12736−12744.
(6) (a) Codée, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.; Overkleeft,
H. S.; van der Marel, G. A. Thioglycosides in Sequential
Glycosylation Strategies. Chem. Soc. Rev. 2005, 34, 769–782. (b)
Lian, G.; Zhang, X.; Yu, B. Thioglycosides in Carbohydrate Research.
Carbohydr. Res. 2015, 403, 13–22.
REFERENCES
9
(1) For the most recent reviews on chemical glycosylation, see: (a)
Bennett, C. S.; Galan, M. C. Methods for 2-Deoxyglycoside
Synthesis. Chem. Rev. 2018, 118, 7931–7985. (b) Kulkarni, S. S.;
Wang, C. -C.; Sabbavarapu, N. M.; Podilapu, A. R.; Liao, P. –H.;
Hung, S. –C. “One-Pot” Protection, Glycosylation, and Protection–
Glycosylation Strategies of Carbohydrates. Chem. Rev. 2018, 118,
8025–8104. (c) Panza, M.; Pistorio, S. G.; Stine, K. J.; Demchenko,
A. V. Automated Chemical Oligosaccharide Synthesis: Novel
Approach to Traditional Challenges. Chem. Rev. 2018, 118, 8105–
8150. (d) Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich,
D. The Experimental Evidence in Support of Glycosylation
Mechanisms at the SN1–SN2 Interface. Chem. Rev. 2018, 118, 8242–
8284. (e) Nielsen, M. M.; Pedersen, C. M. Catalytic Glycosylations in
Oligosaccharide Synthesis. Chem. Rev. 2018, 118, 8285–8358. (f)
Leng, W. –L.; Yao, H.; He, J.-X.; Liu, X. –W. Venturing Beyond
Donor-Controlled Glycosylation: New Perspectives Toward
Anomeric Selectivity. Acc. Chem. Res. 2018, 51, 628−639. (g) Peng,
P.; Schmidt, R. R. Acid–Base Catalysis in Glycosidations: A Nature
Derived Alternative to the Generally Employed Methodology. Acc.
Chem. Res. 2017, 50, 1171−1183.
(2) For some recent reports on new glycosylation reactions, see: (a) Yang,
T.; Zhu, F.; Walczak, M. A. Stereoselective Oxidative Glycosylation
of Anomeric Nucleophiles with Alcohols and Carboxylic Acids. Nat.
Comm. 2018, 9:3650. (b) Wadzinski, T. J.; Steinauer, A.; Hie, L.;
Pelletier, G.; Schepartz, A.; Miller, S. J. Rapid Phenolic O-
Glycosylation of Small Molecules and Complex Unprotected Peptides
in Aqueous Solvent. Nat. Chem. 2018, 10, 644–652. (c) Palo-Nieto,
C.; Sau, A.; Galan, M. C. Gold(I)-Catalyzed Direct Stereoselective
Synthesis of Deoxyglycosides from Glycals. J. Am. Chem. Soc. 2017,
139, 14041−14044. (d) Wang, H. –Y.; Simmons, C. J.; Blaszczyk, S.
A.; Balzer, P. G.; Luo, R.; Duan, X.; Tang, W. Isoquinoline-1-
Carboxylate as a Traceless Leaving Group for Chelation-Assisted
Glycosylation under Mild and Neutral Reaction Conditions. Angew.
Chem. Int. Ed. 2017, 56, 15698–15702. (e) Park, Y.; Harper, K. C.;
Kuhl, N.; Kwan, E. E.; Liu, R. Y.; Jacobsen, E. N. Macrocyclic Bis-
thioureas Catalyze Stereospecific Glycosylation Reactions. Science.
2017, 355, 162–166. (f) Sun, L.; Wu, X.; Xiong, D.-C.; Ye, X.-S.
Stereoselective Koenigs–Knorr Glycosylation Catalyzed by Urea.
Angew. Chem. Int. Ed. 2016, 55, 8041–8044. (g) Xiao, X.; Zhao, Y.;
Shu, P.; Zhao, X.; Liu, Y.; Sun, J.; Zhang, Q.; Zeng, J.; Wan, Q.
Remote Activation of Disarmed Thioglycosides in Latent-Active
Glycosylation via Interrupted Pummerer Reaction. J. Am. Chem. Soc.
2016, 138, 13402−13407.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) The experimental details and characterization data are provided in the
Supporting Information.
(8) For the relevant intramolecular ipso-halocyclizations, see: (a) Li, C. -
W.; Wang, C. -I.; Liao, H. -Y.; Chaudhuri, R.; Liu, R. -S. Synthesis
of Dibenzo[g,p]chrysenes from Bis(biaryl)acetylenes via Sequential
ICl-Induced Cyclization and Mizoroki-Heck Coupling. J. Org. Chem.
2007, 72, 9203–9207. (b) Zhang, X.; Larock, R. C. Synthesis of
Spiro[4.5]trienones by Intramolecular ipso-Halocyclization of 4-(p-
Methoxyaryl)-1-alkynes. J. Am. Chem. Soc. 2005, 127, 12230–12231.
(c) Appel, T. R.; Yehia, N. A. M.; Baumeister, U.; Hartung, H.; Kluge,
R.; Ströhl, D.; Fanghänel, E. Electrophilic Cyclisation of Bis(4-
methoxybenzylthio)acetylene: Competition Between Ar2-6 and Ar1-5
Routes, Yielding 1H-2-Benzothiopyrans or Spiro Derivatives of
Cyclohexadienone. Eur. J. Org. Chem. 2003, 47–53.
(9) Ranade, S. C.; Demchenko, A. V. Mechanism of Chemical
Glycosylation: Focus on the Mode of Activation and Departure of
Anomeric Leaving Groups. J. Carbohydr. Chem. 2013, 32, 1–43.
(10) Ma, Y.; Lian, G.; Li, Y.; Yu, B. Identification of 3,6-Di-O-Acetyl-
1,2,4-O-Orthoacetyl--D-Glucopyranose as a Direct Evidence for the
4-O-Acyl Group Participation in Glycosylation. Chem. Commun.
2011, 47, 7515–7517.
(11) a) Vorbrüggen, H. Adventures in Silicon-Organic Chemistry. Acc.
Chem. Res. 1995, 28, 509–520. (b) Zhang, Q.; Sun, J.; Zhu, Y.; Zhang,
F.; Yu, B. An Efficient Approach to the Synthesis of Nucleosides:
Gold(I)-Catalyzed N-Glycosylation of Pyrimidines and Purines with
Glycosyl ortho-Alkynylbenzoates. Angew. Chem. Int. Ed. 2011, 50,
4933–4936.
(12) (a) Shiao, T. C.; Roy, R. “Active–Latent” Thioglycosyl Donors and
Acceptors in Oligosaccharide Syntheses. Top. Curr. Chem. 2011, 301,
69–108. (b) Smoot, J. T.; Demchenko, A. V. Oligosaccharide
Synthesis: From Conventional Methods to Modern Expeditious
Strategies. Adv. Carbohydr. Chem. Biochem. 2009, 62, 161–250. (c)
Boons, G. J. Strategies in Oligosaccharide Synthesis. Tetrahedron
1996, 52, 1095–1121.
(13) (a) Vwneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Iodonium
Ion Promoted Reactions at the Anomeric Centre. II An Efficient
Thioglycoside Mediated Approach Toward the Formation of 1,2-
Trans Linked Glycosides and Glycosidic Esters. Tetrahedron Lett.
1990, 31, 1331–1334. (b) Konradsson, P.; Mootoo, D. R.; McDevitt,
R. E.; Fraser-Reid, B. Iodonium Ion Generated in situ from N-
Iodosuccinimide and Trifluoromethanesulphonic Acid Promotes
Direct Linkage of ‘Disarmed’ Pent-4-enyl Glycosides. J. Chem. Soc.,
Chem. Commun. 1990, 270–272.
(3) (a) Yu, B. Gold(I)-Catalyzed Glycosylation with Glycosyl o-
Alkynylbenzoates as Donors. Acc. Chem. Res. 2018, 51, 507–516. (b)
Li, W.; Yu, B. Gold-Catalyzed Glycosylation in the Synthesis of
Complex Carbohydrate-Containing Natural Products. Chem. Soc.
Rev. 2018, 47, 7954–7984.
(14) Zhang, Z.; Ollmann, I. R.; Ye, X. –S.; Wischnat, R.; Baasov, T.;
Wong, C.-H. Programmable One-Pot Oligosaccharide Synthesis. J.
Am. Chem. Soc. 1999, 121, 734–753.
(4) (a) Imagawa, H.; Kinoshita, A.; Fukuyama, T.; Yamamoto, H.;
Nishizawa, M. Hg(OTf)2-Catalyzed Glycosylation Using Alkynoate
as the Leaving Group. Tetrahedron Lett. 2006, 47, 4729−4731. (b) Li,
Y.; Yang, Y.; Yu, B. An Efficient Glycosylation Protocol with
Glycosyl ortho-Alkynylbenzoates as Donors Under the Catalysis of
Ph3PAuOTf. Tetrahedron Lett. 2008, 49, 3604−3608. (c) Mishra, B.;
Neralkar, M.; Hotha, S. Stable Alkynyl Glycosyl Carbonates:
Catalytic Anomeric Activation and Synthesis of a Tridecasaccharide
Reminiscent of Mycobacterium tuberculosis Cell Wall
Lipoarabinomannan. Angew. Chem., Int. Ed. 2016, 55, 7786−7791.
(d) Dong, X.; Chen, L.; Zheng, Z.; Ma, X.; Luo, Z.; Zhang, L. Silver-
Catalyzed Stereoselective Formation of Glycosides Using Glycosyl
Ynenoates as Donors. Chem. Commun. 2018, 54, 8626–8629.
(15) According to
a reviewer comment, we performed a similar
competition reaction between perbenzoyl EPP donor 9b and its
perbenzyl counterpart 9c. Interestingly, 9c was found to be only two
times more reactive than 9b (see Supporting Information for details),
indicating a greatly diminished armed-disarmed effect imposed by the
protecting groups of the donors in the present glycosylation reaction.
(16) For early reports on the aglycone migration of thioglycosides, see: (a)
Leigh, D. A.; Smart, J. P.; Truscello, A. M. Intermolecular Aglycon
Transfer of Ethyl 1-Thiorhamnopyranosides Under Koenigs-Knorr
and Helferich Glycosylation Conditions. Carbohydr. Res. 1995, 276,
417–424. (b) Belot, F.; Jacquinet, J.-C. Intermolecular Aglycon
Transfer of
a Phenyl 1-Thiogalactosaminide Derivative Under
Trichloroacetimidate Glycosylation Conditions. Carbohydr. Res.
1996, 290, 79–86. (c) Yu, H.; Yu, B.; Wu, X.; Hui, Y.; Han, X.
ACS Paragon Plus Environment