4484
Y. Li et al. / Tetrahedron Letters 50 (2009) 4482–4484
work was also supported by the Maching Fund Subsidy for Private
University of Japan. T.K. is grateful to the JSPS for a Research Fel-
lowship for Young Scientist.
References and notes
1. Isolation: Kerner, P.; Schwyzer, R.; Flan, A. Helv. Chim. Acta 1952, 35, 851;
Structure determination: Prelog, V.; Janot, M. M.; Goumelen, E. E.; Katz, T. J. J.
Am. Chem. Soc. 1957, 79, 6426.
2. (a)For a review on the various total synthesese of the corynantheine series, see:
Total Synthesis of Natural products; Apsimon, J. A., Ed.; Wiley: New York, 1977;
Vol. 3, pp 315–344; (b) Lounasmaa, M.; Tolvanen, A. The Corynantheine-
Heteroyohimbine Group. In Monoterpenoid Indole Alkaloids; Saxton, J. E., Ed.;
John Wiley & Sons Ltd: Chichester, UK, 1994; pp 58–147; (c) Takayama, H.
Chem. Pharm. Bull. 2004, 52, 916–928; d The syntheses of dihydrocorynantheol,
see: (i) Itoh, T.; Yokoya, M.; Miyauchi, K.; Nagata, K.; Ohsawa, A. Org. Lett. 2006,
8, 1533–1535. (ii) Deiters, A.; Pettersson, M.; Martin, S. F. J. Org. Chem. 2006, 71,
6547. (iii) Amat, M.; Gomez-Esque, A.; Escolano, C.; Santos, M. M. M.; Molins,
E.; Bosch, J. J. Org. Chem. 2009, 74, 1205.
3. (a) Shellard, E. J.; Houghton, P. J. Planta Med. 1973, 24, 13; (b) Vamvacas, C.;
Phillipsborn, W. V.; Schlittler, E.; Schmid, H.; Karrer, P. Helv. Chim. Acta 1957,
40, 1793.
4. (a) Imanishi, T.; Inoue, M.; Wada, Y.; Hanaoka, M. Chem. Pharm. Bull. 1982, 30,
1925; (b) Lounasmaa, M.; Jokela, R.; Tirkkonen, B.; Miettinen, J.; Halonen, M.
Heterocycles 1992, 34, 321.
5. Janot, M.-M.; Goutarel, R. C. R. Acad. Sci. 1944, 218, 852.
6. Janot, M.-M.; Goutarel, R.; Le Hir, A.; Tsatsas, G.; Prelog, V. Helv. Chim. Acta
1955, 38, 1073.
Scheme 3. Reagents and conditions: (a) Ba(OH)2, H2O, THF/MeOH (2:1), 50 °C,
30 min, 100%; (b) Li, NH3, THF, ꢀ78 °C then ꢀ33 °C, 84%; (c) thionyl chloride, MeOH,
reflux, 1 h, 60%, (d) H2, PtO2, MeOH, rt, 30 min, 72%.
7. (a) Weisbach, J. A.; Kirkpatrick, J. L.; Williams, K. R.; Anderson, E. L.; Yim, N. C.;
Douglas, B. Tetrahedron Lett. 1965, 3457; (b) Wenkert, E.; Dave, K. G.; Lewis, R.
G.; Sprague, P. W. J. Am. Chem. Soc. 1967, 89, 6741; (c) Szantay, C.; Barczai-Beke,
M. Chem. Ber. 1969, 102, 3693; (d) Brown, R. T.; Chapple, C. L.; Charalambides,
A. A. J. Chem. Soc., Chem. Commun. 1974, 756; (e) Van Tamelen, E. E.; Dorschel, C.
Bioorg. Chem. 1976, 5, 203; (f) Sakai, S.; Shinma, N. Chem. Pharm. Bull. 1978, 26,
2596; (g) Lounasmaa, M.; Jokela, R.; Laine, C.; Hanhinen, P. Tetrahedron Lett.
1995, 36, 8687.
8. (a) Beard, R. L.; Meyers, A. I. J. Org. Chem. 1991, 56, 2091; (b) Yu, S.; Berner, O.
M.; Cook, J. M. J. Am. Chem. Soc. 2000, 122, 7827.
9. (a) Tanaka, K.; Katsumura, S. J. Am. Chem. Soc. 2002, 124, 9660; (b) Tanaka, K.;
Kobayashi, T.; Mori, H.; Katsumura, S. J. Org. Chem. 2004, 69, 5906.
10. Kobayashi, T.; Nakashima, M.; Hakogi, T.; Tanaka, K.; Katsumura, S. Org. Lett.
2006, 8, 3809.
11. Kobayashi, T.; Hasegawa, F.; Tanaka, K.; Katsumura, S. Org. Lett. 2006, 8, 3813.
12. The manuscript entitled ‘Efficient Synthetic Method of 2,4,5-Trisubstituted 2,5-
Chiral Tetrahydropyridines by One-pot Asymmetric Azaelectrocyclization
Protocol’ was accepted: Kobayashi, T.; Takeuchi, K.; Tsuchikawa, H.;
Katsumura, S. Chem. Commun. 2009. In the Letter, the structure including the
stereochemistry of the product produced by a new version of the one-pot
asymmetric azaelectrocyclization, was unambiguously determined by the X-
ray crystallographic analysis of the corresponding ethyl ester of a phenyl
derivative (Fig. 2, R1 = R2 = Et, R = Ph).
The formal synthesis of (ꢀ)-corynantheidine (2) from the inter-
mediate (ꢀ)-10 was also achieved (Scheme 3). After (ꢀ)-10 was
hydrolyzed with Ba(OH)2 in THF and MeOH, the Birch reduction
of the quantitatively produced (ꢀ)-12 provided the desired acid
(ꢀ)-13 in 84% yield resulting from the removal of the thiophenyl
and benzenesulfonyl groups without reduction of the carboxyl
group. Esterification of the obtained (ꢀ)-13 with thionyl chloride
in MeOH gave the corresponding ester (ꢀ)-14 in 60% yield. The cat-
alytic hydrogenation of the resulting (ꢀ)-14 with platinum dioxide
in MeOH successfully provided the Cook’s intermediate (ꢀ)-15 in
72% yield as a single diastereomer. The spectral characteristics of
the synthesized (ꢀ)-15 were in good agreement with those re-
ported by Cook and co-workers.8b According to the precedence
established by Cook and co-workers for the synthesis of corynant-
heidine 2, (ꢀ)-15 could be carried through to (ꢀ)-corynantheidine
(2) in two steps.
13. Tetrasubstituted vinyl iodide 3 was prepared as follows:
MgBr,
In summary, we achieved the asymmetric total synthesis of
(ꢀ)-corynantheidol (1) and the formal synthesis of (ꢀ)-corynant-
heidine (2) using the highly efficient and stereoselective one-pot
azaelectrocyclization protocol as the key step. Thus, the one-pot
CO2R
CuBr, I2
I
CO2R
I
CO2R
(Z)
(E)
3a : R = t-Bu
3b : R = t-Bu (Z : E = 1 : 0.7, 79%)
1) O3, Me2S
2) LiAl(OtBu)3H
and separation
of isomers
asymmetric 6p-azaelectrocyclization reaction developed by us
can be regarded as a powerful strategy for the synthesis of alka-
loids possessing a 2,4,5-trisubstituted piperidine core. Further
applications toward related natural alkaloids are currently being
pursued in our laboratory.
OHC
I
3 : R = t-Bu, 22% (3 steps)
CO2R
3) MnO2
14. Kuethe, J. T.; Davies, I.; Dormer, P. G.; Reamer, R. A.; Mather, D. J.; Reider, P. J.
Tetrahedron Lett. 2002, 43, 29.
15. Bennasar, M-L.; Zulaica, E.; Sufi, B. A.; Bosch, J. Tetrahedron 1996, 52, 8601;
(b) Amat, M.; Hadida, S.; Pshenichnyi, G.; Bosch, J. J. Org. Chem. 1997, 62,
3158.
Acknowledgments
This work was financially supported by a Grant-in-Aid for Sci-
ence Research on Priority Areas 16073222 from the Ministry of
Education, Culture, Sports, Science and Technology, Japan. This
16. Synthesized; mp 188.6–189.8 °C,
½ ꢁ ꢀ86 (c 0.2, pyridine): lit; mp 189–
a D
½
191 °C,8a
½
a D
ꢁ
ꢀ93 (c 0.52, pyridine),8a
a D
ꢁ
ꢀ102 (c 0.62,pyridine).8b