4864
S. Chanthamath et al. / Tetrahedron Letters 53 (2012) 4862–4865
Ru(II)-Pheox catalyst in the carbene transfer reactions of diazoace-
tates to furnish cyclopropanes.10
easy access to a-aminoamide derivatives, which are important
building blocks for the synthesis of natural products and pharma-
ceuticals. In addition, we successfully used this catalytic N–H
insertion reaction and obtained 2-(2-methylquinolin-4-ylamino)-
N-phenylacetamide, a potential antileishmanial agent, in high yield
(96%) within 5 min under mild reaction conditions.
Initially, we evaluated the catalytic activity of Ru(II)-dm-Pheox
catalyst11 in various solvents for the intermolecular N–H insertion
reaction of N-methylaniline 1a with N-benzyl-N-methyldiazoace-
tamide 2a, as shown in Table 1. Dichloromethane was the best
solvent (Table 1, entry 8) since the reaction in this case gave 3a
in 97% yield, in the presence of 0.5 mol % Ru(II)-dm-Pheox catalyst.
Acknowledgment
Interestingly, the catalyst could afford
a-aminoamide 3a in high
yield (77%) even in water at room temperature (Table 1, entry 2).
The yield was slightly decreased when the reaction was performed
with 1 equiv of N-methylaniline 1a to diazoamide 2a (entry 9).
Rh2(OAc)4 and CuI also catalyzed the N–H insertion of diazoaceta-
mide 2a with N-methylaniline 1a to give moderate yields (entries
10 and 11).
This study was supported by a Grant-in-Aid for Scientific Re-
search (C) (No. 23550179) from Japan Society for the Promotion
of Science.
Supplementary data
Under the optimized conditions, N–H insertion reactions with
various N-substituted diazoacetamides were examined (Table 2).
All the N-substituted diazoacetamides participated in the reaction
Supplementary data (experimental procedures, detailed prod-
uct characterization data, compound spectra) associated with this
to afford the corresponding
a-aminoamides in high yields (82–
97%) in 5 min. Further, the reactivity of the N–H insertion was lar-
gely unaffected even when diazoacetamide 2c having two bulky
benzyl substituents was used.
References and notes
N–H insertion reactions of various amines, including secondary,
aliphatic, and aromatic amines, with 2a in the presence of Ru(II)-
dm-Pheox (0.5 mol %) at room temperature were also examined,
as shown in Table 3. Electron-donating and electron-withdrawing
arylamine derivatives could easily undergo insertion reactions
1. (a) Tolstikov, G. A.; Borisova, E. Y.; Cherkashin, M. I.; Komarov, V. M.;
Arzamastsev, E. V. Rus. Chem. Rev. 1991, 60, 420; (b) Duflos, M.; Courant, J.;
Baut, L. G.; Grimaud, N.; Renard, P.; Manechez, D.; Caignard, D-. H. Eur. J. Med.
Chem. 1998, 33, 635; (c) Chu, G.-H.; Gu, M.; Cassel, J. A.; Belanger, S.; Stabley, G.
J.; DeHaven, R. N.; Conway-james, N.; Koblish, M.; Little, P. J.; DeHaven-
Hudkins, D. L.; Dolle, R. E. Bioorg. Med. Chem. Lett. 2006, 16, 645; (d) Prochia, L.
M.; Guerra, M.; Wang, Y. C.; Zhang, W. L.; Espinosa, A. V.; Shinohara, M.; Kulp, S.
K.; Kirschner, L. S.; Saji, M.; Chen, C. S.; Ringel, M. D. Mol. Pharmacol. 2007, 72,
1124; (e) Salom, C.; Grosjeant, E. S-.; Part, K. D.; Morieuxt, P.; Swendimant, R.;
DeMarcot, E.; Stable, J. P.; Kohn, H. J. Med. Chem. 2010, 53, 1288; (f) Salom, C.;
Grosjeant, E-S.; Stable, J. P.; Kohn, H. J. Med. Chem. 2010, 53, 3756; (g)
Pasquinucci, L.; Prezzavento, O.; Marrazzo, A.; Amata, E.; Ronsisvalle, S.;
Georgoussi, Z.; Fourla, D.-D.; Scoto, G. M.; Parenti, C.; Aricò, G.; Ronsisvalle, G.
Bioorg. Med. Chem. 2010, 18, 4975.
with 2a to give the corresponding
a-aminoamides in high yields
(90–98%; entries 1–4 and 6). The only exception was the reaction
with p-nitroaniline 4d, in which case the product yield was low
(48%) and dimers were formed (entry 5), probably because the
electron density of p-nitroaniline is lower than that of the other
arylamines shown in Table 3. Simple secondary amines such as
2. (a) Ooi, T.; Takeuchi, M.; Kato, D.; Uematsu, Y.; Tayama, E.; Sakai, D.; Maruoka,
K. J. Am. Chem. Soc 2005, 127, 5073; (b) Zhang, D.; Xing, X. C.; Cuny, G. D. J. Org.
Chem. 2006, 71, 1750; (c) Scott, W. L.; Zhou, Z.; Martynow, J. G.; O’Donnell, M. J.
Org. Lett. 2009, 11, 3558.
3. (a) Xu, Y. X.; Cordova, A. Chem. Commun. 2006, 460; (b) Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed. 2004, 43, 5138; (c) Yu, Z. P.; Liu, X. H.; Zhou, L.; Lin, L. L.;
Feng, X. M. Angew. Chem., Int. Ed. 2009, 48, 5195.
4. (a) Burguete, M. I.; Collado, A.; Escorihuela, J.; Galindo, F.; Garcia-Verdugo, E.;
Luis, S. V.; Vicent, M. J. Tetrahedron Lett. 2003, 44, 6891; (b) Hird, A. W.;
Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988.
5. (a) Porter, J. R.; Wirschun, W. G.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2000, 122, 2657; (b) Takamura, M.; Hamashima, Y.; Usuda, H.;
Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2000, 39, 1650; (c) Lin, Y. S.;
Alper, H. Angew. Chem. Int. Ed. 2001, 40, 779; (d) Wang, M. X.; Lin, S. J. J. Org.
Chem. 2002, 67, 6542; (e) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Eur. J.
2002, 8, 3646; (f) Zvilichovsky, G.; Gbara-Haj-Yahia, I. J. Org. Chem. 2004, 69,
4966; (g) Yoshimitsu, T.; Matsuda, K.; Nagaoka, H.; Tsukamoto, K.; Tanaka, T.
Org. Lett. 2007, 9, 5115; (h) Ntaganda, R.; Milovic, T.; Tiburcioz, J.; Thadani, A. N.
Chem. Commun. 2008, 4052; (i) Löser, R.; Frizler, M.; Schilling, K.; Gutschow, M.
Angew. Chem., Int. Ed. 2008, 47, 4331; (j) Noorduim, W. L.; Izumi, T.; Millemaggi,
A.; Leeman, M.; Meekers, H.; Van Enckevort, W. J. P.; Kellogg, R. M.; Kaptein, B.;
Vlieg, E.; Blackmond, D. G. J. Am. Chem. Soc. 2008, 130, 1158; (k) Hirner, S.;
Somfai, P. J. Org. Chem. 2009, 74, 7798; Zhang, M.; Imm, S.; Bähn, S.; Neumann,
H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 11393.
dibenzyl and dipropyl amines also afforded the corresponding
a-
aminoamides in high yields (entries 7 and 8). Interestingly, aniline,
which has lower nucleophilicity than do other primary and sec-
ondary amines, could be successfully used in the insertion reaction
with diazoacetamides 2a and 2d to afford the corresponding
aminoamides in high yields (entries 9 and 10).
Encouraged by the efficiency of the Ru(II)-dm-Pheox catalyzed
N–H insertion reaction of diazoacetamides with amines, we sought
to examine the utility of this method for the synthesis of 2-(2-meth-
ylquinolin-4-ylamino)-N-phenylacetamide 7, which was reported
to be a potential antileishmanial agent by Sahu et al. in 200212
(Scheme 2). We used 4-aminoquinaldine 6 as the amine substrate
and carried out the N–H insertion with N-phenyldiazoacetamide
2d in the presence of Ru(II)-dm-Pheox catalyst under the optimized
a-
conditions. The desired a-aminoamide 7 was obtained in high yield
(96%) within a very short time (5 min).
In conclusion, we have established an efficient protocol for the
preparation of N-substituted
a-aminoamides through the Ru(II)-
dm-Pheox catalyzed N–H insertion reaction of various diazoaceta-
6. Strecker, A. Justus Liebigs Ann. Chem. 1850, 75, 27.
7. (a) Meyer, P. J. Chemische Berichte. 1875, 8, 1156; (b) Ananthanarayanan, C.;
Ramakrishnan, V. T.; Indian, J. Chem. B: Org. 1988, 27, 156; (c) Rehwald, M.;
Gewald, K.; Lankau, H.-J.; Unverferth, K. Heterocycles. 1997, 45, 483; (d) Kumar,
S.; Wahi, A. K.; Singh, R. Eur. J. Med. Chem. 2011, 46, 4753.
mides into several amines, including aniline. The method gives
8. (a) Galardon, E.; Maux, P. L.; Simonneaux, G. J. Chem. Soc., Perkin Trans. 1 1997,
2455; (b) Wang, J.; Hou, Y.; Wu, P. J. Chem. Soc., Perkin Trans. 1 1999, 2277; (c)
Fructos, M. R.; Belderrain, T. R.; Nicosio, M. C.; Nolan, S. P.; Kaur, H.; Díaz-
Requejo, M. M.; Pérez, P. J. J. Am. Chem. Soc. 2004, 35, 10847; (d) Fructos, M. R.;
Belderrain, T. R.; Frémont, P. D.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.;
Pérez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284; (e) Zhang, X.; Sui, Z. Tetrahedron
Lett. 2006, 47, 5953; (f) Frémont, P. D.; Stevens, E. D.; Fructos, M. R.; Díaz-
Requejo, M. M.; Pérez, P. J.; Nolan, S. P. Chem. Commun. 2006, 2045; (g) Kantam,
M. L.; Neelima, B.; Reddy, C. V. J. Mol. Cat. A: Chem. 2006, 256, 269; (h) Liu, B.;
Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 583; (i)
Lee, E. C.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 12066; (j) Deng, Q.-H.; Xu, H.-W.;
Yuen, A. W.-H.; Xu, Z.-J.; Che, C.-M. Org. Lett. 2008, 10, 1529; (k) Taber, D. F.;
Berry, J. F.; Martin, T. J. J. Org. Chem. 2008, 73, 9334; (l) Saito, H.; Uchiyama, T.;
Miyake, M.; Anada, M.; Hashimoto, S.; Takabatake, T.; Miyairi, S. Heterocycles
O
NH2
Ru(II)-dm-Pheox
H
N
O
(0.5 mol%)
N
H
N2
+
N
H
acetone
RT,5 min
N
N
7
6 (2 equiv)
2d
96% yield
Antileishmanial agent
Scheme 2. Synthesis of 2-(2-methylquinolin-4-ylamino)-N- phenylacetamide 7 via
Ru(II)-dm-Pheox catalyzed N–H insertion of diazoacetamide 2d into 4-aminoquin-
aldine 6.