ChemComm
Communication
Soc., 2010, 132, 17741; (b) F. Kakiuchi, T. Sato, K. Igi, N. Chatani and
S. Murai, Chem. Lett., 2001, 386; (c) T. Sato, F. Kakiuchi, N. Chatani
and S. Murai, Chem. Lett., 1998, 893; For keto-directed o-C–H bond
alkenylation, see: (d) K. Muralirajan, K. Parthasarathy and
C.-H. Cheng, Angew. Chem., Int. Ed., 2011, 50, 4169; (e) K. Padala
and M. Jeganmoham, Org. Lett., 2011, 13, 6144; ( f ) F. Kakiuchi,
T. Uetsuhara, Y. Tanaka, N. Chatani and S. Murai, J. Mol. Catal. A,
2002, 511; (g) M. Sonoda, F. Kakiuchi, N. Chatani and S. Murai, Bull.
Chem. Soc. Jpn., 1997, 70, 3117; (h) F. Kakiuchi, Y. Yamamoto,
N. Chatani and S. Murai, Chem. Lett., 1995, 681; For keto-directed
o-C–H bond arylation, see: (i) F. Kakiuchi, Y. Matsuura, S. Kan and
N. Chatani, J. Am. Chem. Soc., 2005, 127, 5936; ( j) F. Kakiuchi,
S. Kan, K. Igi, N. Chatani and S. Murai, J. Am. Chem. Soc., 2003,
125, 1698; For keto-directed o-C–H bond halogenation, see:
Scheme 2 Proposed catalytic cycle.
¨
(k) N. Schroder, J. Wencel-Delord and F. Glorius, J. Am. Chem. Soc.,
2012, 134, 8298; For keto-directed o-C–H bond oxygenation, see:
(l) P. Y. choy and Y. Kwong, Org. Lett., 2013, 15, 270; (m) F. Mo,
L. J. Trzepkowski and G. Dong, Angew. Chem., Int. Ed., 2012,
51, 13075; (n) V. S. Thirunavukkarasu and L. Ackermann, Org. Lett.,
2012, 14, 6206; For keto-directed o-C–H bond amidation, see:
(o) B. Xiao, T.-J. Gong, J. Xu, Z.-J. Liu and L. Liu, J. Am. Chem. Soc.,
2011, 133, 1466.
corresponding ortho-C–N bearing products 4a–d in good to excellent
yields (see ESI‡). Aliphatic sulfonyl azides 2f–i were also viable,
delivering the desired 4e–h in moderate yields. The thienyl–sulfonyl
amido bearing product 4i was obtained in 63% yield, when
5-chlorothiophene-2-sulfonyl azide (2j) reacted with 1a.
3 Amino Group Chemistry, From Synthesis to the Life Sciences, ed. A. Ricci,
Wiley-VCH, Weinheim, 2007.
4 (a) J. W. Tye, Z. Weng, A. M. Johns, C. D. Incarvito and J. F. Hartwig,
J. Am. Chem. Soc., 2008, 130, 9971; (b) J. F. Hartwig, Acc. Chem. Res.,
2008, 41, 1534; (c) J. P. Wolfe, S. Wagam, J.-F. Marcoux and
S. L. Buchwald, Acc. Chem. Res., 1998, 31, 805; (d) F. Paul, J. Patt
and J. F. Hartwig, J. Am. Chem. Soc., 1994, 116, 5969; (e) A. S. Guram
and S. L. Buchwald, J. Am. Chem. Soc., 1994, 116, 7901.
(1)
5 Reviews on direct C–H amination, see: (a) J. Wencel-Delord,
¨
T. Droge, F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40, 4740;
The intermolecular competitive amidation among 1c and 1h,
1c and 1j with 2a (eqn (1)) was performed under the optimized
conditions. The ratios of products 3c/3h and 3c/3j were found to
be 1.5/1.0 and 2.5/1.0, respectively, indicating better reactivity of
the electron-rich over electron-poor arenes (see ESI‡).
(b) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev., 2011,
40, 5068.
6 For recent reviews on C–H activation, see: (a) L. Ackermann,
A. R. Kapdi, H. K. Potukuchi and S. I. Kozhushkov, Syntheses via
C–H Bond Functionalizations, in Handbook of Green Chemistry, ed.
C.-J. Li, Wiley-VCH, Weinheim, 2012, pp. 259–305; (b) S. R. Neufeldt
and M. S. Sanford, Acc. Chem. Res., 2012, 45, 936; (c) D. A. Colby,
A. S. Tsai, R. G. Bergman and J. A. Ellman, Acc. Chem. Res., 2012,
45, 814; (d) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem.
Res., 2012, 45, 788; (e) P. B. Arockiam, C. Bruneau and P. H. Dixneuf,
Chem. Rev., 2012, 112, 5879; ( f ) L. Ackermann, Chem. Rev., 2011,
111, 1315; (g) L.-M. Xu, B.-J. Li, Z. Yang and Z.-J. Shi, Chem. Soc. Rev.,
2010, 39, 712.
7 Other C–N bond formations, see: (a) C. Grohmann, H. Wang and
F. Glorius, Org. Lett., 2012, 14, 656; (b) K. Sun, Y. Li, T. Xiong,
J. Zhang and Q. Zhang, J. Am. Chem. Soc., 2011, 133, 1694;
(c) E. J. Yoo, S. Ma, T.-S. Mei, K. S. L. Chan and J.-Q. Yu, J. Am.
Chem. Soc., 2011, 133, 7652; (d) K.-H. Ng, Z. Zhou and W.-Y. Yu, Org.
Lett., 2011, 14, 272; (e) K.-H. Ng, A. S. C. Chan and W.-Y. Yu, J. Am.
Chem. Soc., 2010, 132, 12862; ( f ) H.-Y. Thu, W.-Y. Yu and C.-M. Che,
J. Am. Chem. Soc., 2006, 128, 9048.
8 Rh(III)-catalyzed C–N bonds with azides, see: (a) J. Y. Kim, S. H. Park,
J. Ryu, S. H. Cho, S. H. Kim and S. Chang, J. Am. Chem. Soc., 2012,
134, 9110; (b) J. Ryu, K. Shin, S. H. Park, J. Y. Kim and S. Chang,
Angew. Chem., Int. Ed., 2012, 51, 9904; (c) J. Shi, B. Zhou, Y. Yang and
Y. Li, Org. Biomol. Chem., 2012, 10, 8953.
9 Ru-catalyzed C–N bond formation, see: (a) M.-L. Louillat and
F. W. Patureau, Org. Lett., 2013, 15, 164; (b) J. Hu, S. Chen, Y. Sun,
J. Yang and Y. Rao, Org. Lett., 2012, 14, 5030; (c) M. E. Harvey,
D. G. Musaev and J. Du Bois, J. Am. Chem. Soc., 2011, 133, 17207;
(d) E. Milczek, N. Boudet and S. Blakey, Angew. Chem., Int. Ed., 2008,
47, 6825; (e) S. K.-Y. Leung, W.-M. Tsui, J.-S. Huang, C.-M. Che,
J.-L. Liang and N. Zhu, J. Am. Chem. Soc., 2005, 127, 16629; ( f ) L. He,
P. W. H. Chan, W.-M. Tsui, W.-Y. Yu and C.-M. Che, Org. Lett., 2004,
6, 2405; (g) J.-L. Liang, S.-X. Yuan, J.-S. Huang, W.-Y. Yu and
C.-M. Che, Angew. Chem., Int. Ed., 2002, 41, 3465.
Although the detailed mechanism of Ru(II)-catalyzed C–H amida-
tion of arenes is yet to be established, the proposed mechanism is
outlined in Scheme 2.11 The combination of [RuCl2(p-cymene)]2, base,
and AgSbF6 generates the active Ru(II)-catalyst. The coordination of
carbonyl oxygen to the coordinatively unsaturated Ru-catalyst triggers
activation of the o-C–H bond and delivers the metallacycle
intermediate A;6e the deuterium scrambling experiment
supports the reversible cleavage of C–H bonds (see ESI‡).
Coordination of azides to A followed by migratory insertion of
sulfonamido moieties with evolution of N2 gas leads to the
intermediate B. Finally, protonolysis of B provides the desired
product and generates the active ruthenium-complex for the
next catalytic cycle.
In summary, we have developed a ruthenium-catalyzed direct
aryl o-C–H amidation on the readily available aryl–alkyl and aryl–
aryl ketones with sulfonyl azides. The reaction proceeds with the
broad scope of arylketones in good yields. A wide range of sulfonyl
azides were successfully installed on arylketones.
We thank DST (SR/S1/OC-34/2009), UoH, and ACRHEM for
financial support. M.B, M.R.Y, R.K.R and M.R.K thank CSIR,
India, for fellowship.
Notes and references
10 M. R. Yadav, R. K. Rit and A. K. Sahoo, Org. Lett, 2013, 15, 1638.
11 (a) K. Graczyk, W. Ma and L. Ackermann, Org. Lett., 2012, 14, 4110;
(b) L. Ackermann, J. Pospech, K. Graczyk and K. Rauch, Org. Lett.,
2012, 14, 930; (c) E. F. Flegeau, C. Bruneau, P. H. Dixneuf and
A. Jutand, J. Am. Chem. Soc., 2011, 133, 10161.
1 S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda
and N. Chatani, Nature, 1993, 366, 529.
2 Selected examples, for keto-directed o-C–H bond alkylation, see:
(a) F. Kakiuchi, T. Kochi, E. Mizushima and S. Murai, J. Am. Chem.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5225--5227 5227