Journal of the American Chemical Society
Article
5133. (b) Do, H.-Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu,
G. C. Photoinduced, Copper-Catalyzed Alkylation of Amides with
Unactivated Secondary Alkyl Halides at Room Temperature. J. Am.
Chem. Soc. 2014, 136, 2162−2167. (c) Peacock, D. M.; Roos, C. B.;
Hartwig, J. F. Palladium-Catalyzed Cross Coupling of Secondary and
Tertiary Alkyl Bromides with a Nitrogen Nucleophile. ACS Cent. Sci.
2016, 2, 647−652.
(8) (a) Jacobson, I. C.; Quan, M. L.; Wexler, R. R. Fused
Heterocyclic Inhibitors of Factor Xa. Patent WO02/080853A2, Oct
17, 2002. (b) Axten, J. M.; Medina, J. R. Chemical Compounds
Acting as PERK Inhibitors. WO 2015/136463Al, Sep 17, 2015.
(c) Wilson, D.; Fanning, L. T. D.; Sheth, U.; Martinborough, E.;
Termin, A.; Neubert, T.; Zimmermann, N.; Knoll, T.; Whitney, T.;
Kawatkar, A.; Lehsten, D.; Stamos, D.; Zhou, J.; Arumugam, V.;
Gutierrez, C. Heterocyclic Derivatives as Modulators of Ion Channels.
Patent WO2007/075895A2, July 5, 2007.
H.-H.; Liu, L. Copper-Catalyzed Cross-Coupling of Nonactivated
Secondary Alkyl Halides and Tosylates with Secondary Alkyl
Grignard Reagents. J. Am. Chem. Soc. 2012, 134, 11124−11127.
(21) These copper-catalyzed substitution reactions could of course
proceed through different pathways for alkyl iodides versus alkyl
bromides.
(22) The Chemistry of Metal Enolates; Zabicky, J., Ed.; Wiley:
Chichester, U.K., 2009; Vol. 1 and 2.
(9) Nugent, T. C. Chiral Amine Synthesis; Wiley−VCH: Weinheim,
Germany, 2010.
(10) Zhang, H.; Kang, H.; Hong, L.; Dong, W.; Li, G.; Zheng, X.;
Wang, R. Construction of the N1−C3 Linkage Stereogenic Centers
by Catalytic Asymmetric Amination Reaction of 3-Bromooxindoles
with Indolines. Org. Lett. 2014, 16, 2394−2397.
(11) Kainz, Q. M.; Matier, C. M.; Bartoszewicz, A.; Zultanski, S. L.;
Peters, J. C.; Fu, G. C. Asymmetric Copper-Catalyzed C−N Cross-
Couplings Induced by Visible Light. Science 2016, 351, 681−684.
(12) For examples of discussions of indoles as privileged structures
in bioactive molecules, see: (a) de Sa Alves, F. R.; Barreiro, E. J.;
Fraga, C. A. M. From Nature to Drug Discovery: The Indole Scaffold
as a ’Privileged Structure’. Mini-Rev. Med. Chem. 2009, 9, 782−793.
(b) Kumari, A.; Singh, R. K. Medicinal Chemistry of Indole
Derivatives: Current to Future Therapeutic Prospectives. Bioorg.
Chem. 2019, 89, 103021. (c) Table 1 in: Welsch, M. E.; Snyder, S. A.;
Stockwell, B. R. Privileged Scaffolds for Library Design and Drug
Discovery. Curr. Opin. Chem. Biol. 2010, 14, 347−361.
(13) Under the same conditions in the presence of light, the product
is generated in low ee.
(14) For examples of the removal of N-benzyl and N-(p-anisyl)
groups of tertiary lactams to generate secondary lactams, see: (a)
Benzyl: Abe, T.; Takeda, H.; Takahashi, Y.; Miwa, Y.; Yamada, K.;
Ishikura, M. Metal-Catalyzed Reactions between 2-Azabicyclo[2.2.1]-
hept-5-en-3-ones and Arylboronic Acids. Eur. J. Org. Chem. 2010,
2010, 3281−3294. (b) p-Anisyl: Jette, C. I.; Geibel, I.; Bachman, S.;
Hayashi, M.; Sakurai, S.; Shimizu, H.; Morgan, J. B.; Stoltz, B. M.
Palladium-Catalyzed Construction of Quaternary Stereocenters by
Enantioselective Arylation of γ-Lactams with Aryl Chlorides and
Bromides. Angew. Chem., Int. Ed. 2019, 58, 4297−4301.
(15) Under the same conditions, the use of a variety of other
nucleophiles, such as N-methylaniline, led to coupling with lower ee
and/or yield, due to the intervention of a background reaction, the
diminished acidity of the nucleophile, and the like.
(16) Under the same conditions, the corresponding alkyl chloride
does not react with 3-methylindole.
(17) If desired, virtually all (94%) of the chiral phosphine, L*, can be
recovered after oxidation to the corresponding phosphine oxide (see
(18) Hughes, E. D.; Juliusburger, F.; Masterman, S.; Topley, B.;
Weiss, J. Aliphatic Substitution and Walden Inversion. Part I. J. Chem.
Soc. 1935, 1525−1529.
1
(19) In order that the coupling could be monitored by H NMR
spectroscopy, it was conducted in toluene−d8. The standard reaction
(Table 1) proceeeds with similar ee and yield in toluene and in m-
xylene.
(20) For examples of copper-catalyzed substitution reactions that
proceed with inversion of stereochemistry when carbon nucleophiles
are used, see: (a) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.;
Kambe, N. Copper-Catalyzed Cross-Coupling Reaction of Grignard
Reagents with Primary-Alkyl Halides: Remarkable Effect of 1-
Phenylpropyne. Angew. Chem., Int. Ed. 2007, 46, 2086−2089.
(b) Yang, C.-T.; Zhang, Z.-Q.; Liang, J.; Liu, J.-H.; Lu, X.-Y.; Chen,
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX