5640
J.M. Khurana et al. / Tetrahedron 66 (2010) 5637e5641
additional load of DBU. The reaction mixture was refluxed for
specified time, marginal loss of the yield was observed in first
three runs (94%, 92%, and 85%), while in fourth and fifth run the
yield dropped to 75% and 65%, respectively.
(m, 2H, Ar), 7.83 (d, J¼7.2 Hz, 1H, Ar); 8.20 (d, J¼8.1 Hz, 1H); m/z
332.0716 [Mþ].
4.2.3. 2-Amino-4-(4-nitrophenyl)-5,10-dioxo-5,10-dihydro-4H-
benzo[g]chromene-3-carbonitrile (4a). nmax (KBr) 3458, 3354, 3190,
3. Conclusion
2925, 2199, 1664, 1594, 1516 cmꢁ1
;
dH (300 MHz, CDCl3þDMSO-d6)
7.54e8.36 (m, 8H, Ar), 6.55 (s, 2H, NH2), 4.90 (s, 1H, CH); dC
(300 MHz, CDCl3þDMSO-d6) 87.23, 181.67, 163.81,154.68, 153.61,
151.81, 139.56, 138.98, 135.93, 135.15, 133.85, 131.33, 131.29, 128.73,
126.83, 123.57, 62.09, 41.54; m/z 374 [MH]þ.
In summary, we have developed a novel synthetic methodology
for the synthesis of pyran annulated heterocyclic systems using
10 mol % DBU as a catalyst and moreover reusability of the reaction
media without significant loss of activity was an added advantage.
Acknowledgements
4. Experimental
4.1. General
B.N. thanks C.S.I.R., New Delhi, India for the grant of Junior and
Senior Research Fellowships.
All of the chemicals used were purchased from SigmaeAldrich
and used as received. All the synthesized compounds are re-
portedly known, and were identified by comparison of spectral
and physical data with the literature. Thin layer chromatography
was used to monitor reaction progress. Compounds were purified
by crystallization through hot ethanol. Melting points were de-
termined on a melting point apparatus and are uncorrected. IR
(KBr) spectra were recorded on PerkineElmer FTIR spectropho-
tometer and the values are expressed as nmax cmꢁ1 Mass spectral
data were recorded on a Waters micromass LCT Mass Spectrom-
eter and on JEOL-AccuTOF JMS-T100 mass spectrometer having
a DART source. The 1H NMR and 13C NMR spectra were recorded
on Bruker Spectrospin spectrometer and Jeol JNM ECX-400P at
300 MHz and 400 MHz, respectively using TMS as an internal
Supplementary data
Supplementary data associated with this article can be found in
References and notes
1. (a) Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471; (b) Balme, G.; Bossharth, E.;
Monteiro, N. Eur. J. Org. Chem. 2003, 4101; (c) Brase, S.; Gil, C.; Knepper, K. Bi-
oorg. Med. Chem. 2002, 10, 2415; (d) Domling, A.; Ugi, I. Angew. Chem., Int. Ed.
2000, 39, 3168.
2. (a) Weber, L. Drug Discovery. Today 2002, 7, 143; (b) Domling, A. Curr. Opin.
Chem. Biol. 2002, 6, 306.
3. (a) Weber, L. In Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; WILLEY-
VCH GmbH: KGaA: Weinheim, 2005; (b) Hulme, C.; Gore, V. Curr. Med. Chem.
2003, 10, 51.
4. (a) Head-Gordon, T. Chem. Rev. 2002, 102, 2651; (b) Bellissent-Funnel, M. C.;
Done, J. C. Hydrogen Bond Networks; Kluwer Academic Publications: Boston,
MA, 1994; (c) Organic Reaction in Water: Principles, Strategies and applications;
Lindstrom, U. M., Ed.; Blackwell Publishing: Oxford, UK, 2007.
5. (a) Costantino, U.; Fringuelli, F.; Orru, M.; Nocchetti, M.; Piermatti, O.; Pizzo, F.
Eur. J. Org. Chem. 2009, 1214; (b) Girotti, R.; Marrocchi, A.; Minuti, L.; Piermatti,
O.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2006, 71, 70; (c) Amantini, D.; Fringuelli, F.;
Piermatti, O.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2003, 68, 9263; (d) Amantini, D.;
Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Green Chem. 2001, 3, 229;
(e) Fringuelli, F.; Piermatti, O.; Pizzo, F. Synthesis 2003, 15, 2331; (f) Kljin, J. E.;
Engberts, J. B. N. Nature 2005, 435, 746.
6. (a) Pirrung, M. C.; Das Sharma, K. Tetrahedron 2005, 61, 11456; (b) Hailes, H. C.
Org. Process Res. Dev. 2007, 11, 114.
7. Green, G. R.; Evans, J. M.; Vong, A. K. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1995; Vol.
5; p 469.
standard. The chemical shift values are recorded on d scale and the
coupling constants (J) are in hertz.
4.2. General procedure for the synthesis of chromene
derivatives
Aldehyde (2.5 mmol), malononitrile (or ethyl cyanoacetate)
(3.75 mmol), and 10 mL of water were placed in a 50 mL round-
bottomed flask mounted over a magnetic stirrer. DBU (10 mol %,
0.25 mmol) was added to the mixture and the contents were stir-
red. To this stirred mixture, 4-hydroxycoumarin (or 4-hydroxy-6-
methylpyrone or 1-naphthol or 2-hydroxynaphthalene-1,4-dione)
(2.5 mmol) was added. The reaction mixture was refluxed for an
appropriate time as mentioned in Table 1 or Table 2 or Table 3. The
progress of the reaction was monitored by TLC, for disappearance of
aldehyde. After completion of the reaction, the reaction mixture
was allowed to cool at room temperature and water was decanted.
3 mL of Ethanol was added to the mixture and it was stirred. The
solid was collected by filtration at pump, washed with ethanol, and
crystallized from hot ethanol to obtain pure products. The aqueous
filtrate containing DBU was used as such for investigating the
recyclability of the catalyst.
8. Konkoy, C.S.; Fick, D.B.; Cai, S.X.; Lan, N.C.; Keana, J.F.W. PCT Int. Appl. WO
0075123, 2000. Chem. Abstr. 2001, 134, 29313a.
9. (a) Foye, W. O. Principi Di Chimica Farmaceutica; Piccin: Padova, Italy, 1991; p
416; (b) Andreani, L. L.; Lapi, E. Bull. Chim. Farm. 1960, 99, 583; (c) Zhang, Y. L.;
Chen, B. Z.; Zheng, K. Q.; Xu, M. L.; Lei, X. H. Yao Xue Bao 1982, 17, 17; Chem.
Abstr. 1982, 96, 135383e; (d) Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J.
Med. Chem. 1993, 28, 517; (e) Witte, E.C.; Neubert, P.; Roesch, A. Ger. Offen DE.,
3427985, 1986; Chem. Abstr. 1986, 104, 224915f.
10. Ellis, G. P. In The Chemistry of Heterocyclic Compounds Chromenes, Chromanes
and Chromones; In Weissberger, A., Taylor, E. C., Eds.; John Wiley: New York, NY,
1977; Chapter II, pp 11e139.
11. Hafez, E. A.; Elnagdi, M. H.; Elagemey, A. G. A.; El-Taweel, F. M. A. A. Heterocycles
1987, 26, 903.
12. (a) Khafagy, M. M.; El-Wahas, A. H. F. A.; Eid, F. A.; El-Agrody, A. M. Farmaco
2002, 57, 715; (b) Smith, W. P.; Sollis, L. S.; Howes, D. P.; Cherry, C. P.; Starkey, D.
I.; Cobley, N. K. J. Med. Chem. 1998, 41, 787; (c) Martinez, A. G.; Marco, L. J. Bi-
oorg. Med. Chem. Lett. 1997, 7, 3165; (d) Hiramoto, K.; Nasuhara, A.; Michiloshi,
K.; Kato, T.; Kikugawa, K. Mutat. Res. 1997, 395, 47; (e) Dell, C.P.; Smith, C.W.
European Patent Appl. EP 537949. Chem. Abstr. 1993, 119, 139102d; (f) Bianchi,
G.; Tava, A. Agric. Biol. Chem. 1987, 51, 2001; (g) Mohr, S. J.; Chirigos, M. A.;
Fuhrman, F. S.; Pryor, J. W. Cancer Res. 1975, 35, 3750; (h) Eiden, F.; Denk, F. Arch.
Pharm. Weinheim Ger. (Arch. Pharm.) 1991, 324, 353.
13. (a) Li, C.J.; Li, Y.L.; U.S. Patent Appl. Publ. U.S. 2005222246 A1 20,051,006, 2005.
(b) Ough, M.; Lewis, A.; Bey, E. A.; Gao, J.; Ritchie, J. M.; Bornmann, W.;
Boothman, D. A.; Oberley, L. W.; Cullen, J. J. Cancer Biol. Ther. 2005, 4, 95.
14. Moon, D. O.; Choi, Y. H.; Kim, N. D.; Park, Y. M.; Kim, G. Y. Int. Immunopharmacol.
2007, 7, 506.
4.2.1. Spectral data of some representative products given below:
2-amino-4-(4-chlorophenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-
3-carbonitrile (2a). nmax (KBr) 3383, 2143, 1714, 1676, 1608, 1378,
1061, 760 cmꢁ1
; dH (300 MHz, DMSO-d6) 4.46 (s, 1H, CH), 7.27e7.36
(m, 4H, Ar), 7.44 (br s, 2H, NH2), 7.49 (br s, 2H, Ar), 7.70 (t, J¼7.5 Hz,
1H, Ar), 7.88 (d, J¼7.5 Hz,1H, Ar); dC (300 MHz, DMSO-d6) 36.4, 58.7,
104.4,113.8, 117.3, 119.3, 123.3, 129.2, 130.4, 132.6, 133.7, 143.1, 153.0,
154.4, 158.9, 160.3; m/z 350.0458 [Mþ].
4.2.2. 2-Amino-4-(4-chlorophenyl)-4H-benzo[h]chromene-3-car-
15. (a) De Andrade-Neto, V. F.; Goulart, M. O. F.; Da Silva Filho, J. F.; Da Silva, M. J.;
Pinto, M. D. C. F. R.; Pinto, A. V.; Zalis, M. G.; Carvalho, L. H.; Krettli, A. U. Bioorg.
Med. Chem. Lett. 2004, 14, 1145; (b) Elisa, P. S.; Ana, E. B.; Ravelo, A. G.; Yapu, D.
J.; Turba, A. G. Chem. Biodivers. 2005, 2, 264.
bonitrile (3a). nmax (KBr) 3454, 3335, 2192, 1669, 1600, 1572, 1412,
1378, 1100 cmꢁ1
;
dH (300 MHz, CDCl3): 4.79 (br s, 2H, NH2), 4.88 (s,
1H, CH), 7.01 (d, J¼8.7 Hz, 1H, Ar), 7.17e7.32 (m, 5H, Ar), 7.52e7.63