method used to construct nitrogen-containing heterocycles
involves the direct amination of olefins by C-N bond
formation. Unsaturated amines have been successfully
used to synthesize pyrrolidine derivatives via a Pd(II)-
catalyzed cyclization.11 Recently, the aminopalladation
route gained a renewed interest through the introduction
of new Pd catalysts and reaction conditions that turned
out to be compatible with the use of dioxygen as an
oxidant. Since the first nearly simultaneous publication
by Hiemstra and Larock of an aerobic oxidative hetero-
cyclization on a variety of alkenes with Pd(OAc)2/
DMSO,12 new catalysts and conditions have been pro-
posed; among these are N-heterocyclic carbene ligands13
and an asymmetric version of the process.14 Despite
remarkable recent developments in this area, as far as we
are aware 1,3-dienes have been rarely used as substrates.15
Due to our interest in the reactivity and exploitation of
R-metalated 1-alkoxy-1,3-dienes as building blocks in
organic synthesis,16 we recently focused our attention on
electrophiles containing multiple C-N bonds.17 Herein
we report the synthesis of functionalized alkoxydienyl
amines and their use both as precursors of R-aryl glycines
and as substrates in aminopalladation reactions to 2,3,4,5-
tetrasubstituted N-tosylpyrroles.
In the course of these studies, which are aimed at the
addition of the metalated alkoxydienyl moiety, we were
particularly interested in investigating the reactivity of
imines as electrophiles. N-Aryl-, N-tosyl-, and N-Boc-
protected imines were successfully prepared from the
corresponding aldehydes and suitable amines, according
to literature procedures.18 The metalation of 1a and 1b
(Table 1) with 2 equiv of LIC-KOR base (equimolar
Table 1. Synthesis of Alkoxydienyl Amines
entry
product
R
PG
Ar
yielda (%)
1
2
3
4
5
6
7
8
9
2a
2b
2c
2d
2e
2f
2g
2h
2j
H
H
H
H
H
H
H
Me
Me
Ph
Ts
Ts
Ts
Ts
Ts
Boc
Ts
Ts
Ph
Ph
p-Tol
p-MeOC6H4
2-thienyl
p-BrC6H4
Ph
57
86
82
91
79
41
25
74
63
(3) For recent examples, see: (a) St. Cyr, D. J.; Arndtsen, B. A. J. Am.
Chem. Soc. 2007, 129, 12366. (b) Larionov, O. V.; de Meijere, A. Angew.
Chem., Int. Ed. 2005, 44, 5664. (c) Tejedor, D.; Gonzalez-Cruz, D.; Garcia-
Tellado, F.; Marrero-Tellado, J. J.; Rodriguez, M. L. J. Am. Chem. Soc.
2004, 126, 8390. (d) Huang, X.; Shen, R. W.; Zhang, T. X. J. Org. Chem.
2007, 72, 1534. (e) Milgram, B. C.; Eskildsen, K.; Richter, S. M.; Scheidt,
W. R.; Scheidt, K. A. J. Org. Chem. 2007, 72, 3941. (f) Martin, C.;
Maddaluno, J.; Duhamel, L. Tetrahedron Lett. 1995, 36, 9469. Martin,
C.; Maddaluno, J.; Duhamel, L. Tetrahedron Lett. 1996, 37, 8169. (g)
Zhang, Z.; Zhang, J.; Tan, J.; Wang, Z. J. Org. Chem. 2008, 73, 5180. (h)
Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127,
9260.
Tol
p-MeOC6H4
a Yields of isolated products.
mixture of BuLi and t-BuOK)19 afforded the (E)-(1-
ethoxybuta-1,3-dienyl)metal (metal ) Li or K); dieny-
lamines 2 were then obtained upon addition of the suitable
imine according to a nucleophilic addition mechanism.20
In view of further elaborations of the products, different
protecting groups were employed, such as phenyl (entry
1, Table 1), tosyl (entries 2-6, 8, and 9), and Boc (entry
7). As expected, the reactivity of N-phenylimine was poor,
due to the low reactivity of the iminic carbon; nevertheless,
the corresponding dienylamine 2a was successfully iso-
lated even though in moderate yield (57%).21 Using these
data as a starting point, we considered the reactivity of
other electrophilic N-protected imines to improve yields
(4) For recent examples, see: (a) St. Cyr, D. J.; Martin, N.; Arndtsen,
B. A. Org. Lett. 2007, 9, 449. (b) Nair, V.; Vinod, A. U.; Rajesh, C. J.
Org. Chem. 2001, 66, 4427.
(5) (a) Dieker, J.; Frohlich, R.; Wurthwein, E. U. Eur. J. Org. Chem.
2006, 5339. (b) Ghavtadze, N.; Frohlich, R.; Wurthwein, E. U. Eur. J. Org.
Chem. 2008, 3656.
(6) Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151.
(7) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 11260.
(8) Martin, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem., Int. Ed.
2006, 45, 7079.
(9) Pan, Y. J.; Lu, H. J.; Fang, Y. W.; Fang, X. Q.; Chen, L. Q.; Qian,
J. L.; Wang, J. H.; Li, C. Z. Synthesis 2007, 1242.
(10) (a) Yuan, X. Y.; Xu, X. B.; Zhou, X. B.; Yuan, J. W.; Mai, L. G.;
Li, Y. Z. J. Org. Chem. 2007, 72, 1510. (b) Martin, R.; Larsen, C. H.;
Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 3379.
(11) (a) Ro¨nn, M.; Ba¨ckvall, J. E.; Andersson, P. G. Tetrahedron Lett.
1995, 36, 7749. (b) Michael, F. E.; Cochran, B. M. J. Am. Chem. Soc.
2006, 128, 4246. (c) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem.
Soc. 2005, 127, 7690.
(12) (a) Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58, 5298.
(b) Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. J.
Org. Chem. 1996, 61, 3584. (c) Anbenthem, R.; Hiemstra, H.; Michels,
J. J.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 357. (d)
Vanbenthem, R.; Hiemstra, H.; Longarela, G. R.; Speckamp, W. N.
Tetrahedron Lett. 1994, 35, 9281.
(18) (a) Taguchi, K.; Westheimer, F. H. J. Org. Chem. 1971, 11, 1570.
(b) Ram, R. N.; Khan, A. A. Synth. Commun. 2001, 31, 841. (c) Kanazawa,
A. M.; Denis, J. N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238.
(19) (a) Schlosser, M. J. Organomet. Chem. 1967, 8, 9. (b) Schlosser,
M. In Modern Synthetic Methods; Scheffold, R., Eds.; VCH: Weinheim,
Germany, 1992; p 227. (c) Mordini, A. In AdVances in Carbanion
Chemistry; Snieckus, V., Ed.; JAI Press, Inc.: Greenwich, CT, 1992; Vol.
1, pp 1-45. (e) Lochmann, L. Eur. J. Inorg. Chem. 2000, 1115.
(20) For a stereoselective approach to dienylamines starting from
enantiomerically enriched stannylated allylamines, see: Reginato, G.;
Gaggini, F.; Mordini, A.; Valacchi, M. Tetrahedron 2005, 61, 6791.
(21) N-Boc-dienylamine 2g has been recovered with an unsatisfac-
tory yield (25%, entry 7, Table 1) along with byproducts coming from
the damage of the Boc protecting group, which turns out to be unsta-
ble under superbasic conditions. N-Protected alkyl imines have not
been considered for this work, as they enolize in the superbasic me-
dium.
(13) Carborough, C. C.; Stahl, S. S. Org. Lett. 2006, 8, 3251.
(14) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 7690. For a
recent example of cascade aminopalladation, see: Yip, K.-T.; Zhu, N.-Y.;
Yang, D. Org. Lett. 2009, 11, 1911.
(15) (a) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am.
Chem. Soc. 2005, 127, 7308. (b) Åkermark, B.; Ba¨ckvall, J. E.; Lo¨wbenerg,
K.; Zetterberg, K. J. Organomet. Chem. 1979, 166, C33. (c) Ba¨ckvall, J. E.;
Andersson, P. G. J. Am. Chem. Soc. 1990, 112, 3683.
(16) Deagostino, A.; Prandi, C.; Zavattaro, C.; Venturello, P. Eur. J.
Org. Chem. 2006, 11, 2463, and references therein.
(17) Blangetti, M.; Deagostino, A.; Prandi, C.; Zavattaro, C.; Venturello,
P. Chem. Commun. 2008, 1689.
Org. Lett., Vol. 11, No. 17, 2009
3915