R. Centore, H.-G. Kuball et al.
FULL PAPER
pendicular (φ = 90°) to the direction of E.[27] For uniaxial phases,
induced in a solution by both an alternating and a constant electric
field of about 3ϫ106 V m–1, the dichroism εE(φ,ν) – ε(ν) depends
on the orientational order of the molecules due to their ground-
state dipole moment µg, the shift of the absorption band pro-
portional to the dipole moment difference ∆µ and the electric-field
dependence of the electric-transition dipole moment µeg(E). UV/
Vis spectra, required for the evaluation of the integral absorption
(ϰ µeg2), were recorded with a Perkin–Elmer Lambda 900 spectro-
photometer at 298 K.
b) I. D. L. Albert, T. J. Marks, M. A. Ratner, J. Am. Chem. Soc.
1997, 119, 6575; c) E. M. Breitung, C.-F. Shu, R. J. McMahon,
J. Am. Chem. Soc. 2000, 122, 1154.
[9]
a) A. Abbotto, S. Bradamante, G. A. Pagani, J. Org. Chem.
2001, 66, 8883; b) G. Brusatin, A. Abbotto, L. Beverina, G. A.
Pagani, M. Casalboni, F. Sarcinelli, P. Innocenzi, Adv. Funct.
Mater. 2004, 14, 1160; c) G. Della Giustina, G. Brusatin, M.
Guglielmi, M. Dispenza, A. M. Fiorello, M. Varasi, M. Casal-
boni, A. Quatela, F. De Matteis, E. Giorgetti, G. Margheri, P.
Innocenzi, A. Abbotto, L. Beverina, G. A. Pagani, Mater. Sci.
Eng. C 2006, 26, 979.
[10]
[11]
A. Abbotto, L. Beverina, R. Bozio, S. Bradamante, C. Fer-
rante, G. A. Pagani, R. Signorini, Adv. Mater. 2000, 12, 1963.
a) P. R. Varanasi, A. K.-Y. Jen, K. Y. Wong, K. J. Drost, Tetra-
hedron Lett. 1993, 34, 1747; b) A. Abbotto, S. Bradamante, A.
Facchetti, G. A. Pagani, J. Org. Chem. 1997, 62, 5755; c) X.
Wu, J. Wu, Y. Liu, A. K.-Y. Jen, Chem. Commun. 1999, 2391;
d) S. Yuquan, Z. Yuxia, W. Jianghon, Q. Ling, L. Shixiong, Z.
Jianfeng, Z. Jiayun, J. Chem. Soc. Perkin Trans. 1 1999, 3691;
e) M. He, T. M. Leslie, J. A. Sinicropi, Chem. Mater. 2002, 14,
4662.
A. Carella, R. Centore, P. Riccio, A. Sirigu, A. Quatela, C.
Palazzesi, M. Casalboni, Macromol. Chem. Phys. 2005, 206,
1399.
a) C. W. Dirk, H. E. Katz, M. L. Schilling, L. A. King, Chem.
Mater. 1990, 2, 700; b) Y.-K. Wang, C.-F. Shu, E. M. Breitung,
R. J. McMahon, J. Mater. Chem. 1999, 9, 1449.
Theoretical Calculations: Dipole moments and static first-order hy-
perpolarizabilities were computed by using density functional
theory with the hybrid B3LYP exchange correlation potential[28]
and the standard 6-31G** basis set. Several tests have shown that
the use of a larger basis set and different exchange correlation po-
tentials does not increase significantly the accuracy of the com-
puted quantities. The minimum energy nuclear configurations were
obtained by full geometry optimization at the same level of compu-
tation; the finite field procedure was used to calculate first-order
hyperpolarizability. All computations were performed using the
Gaussian03 package of software.[29] The applicability of the hybrid
density functional theory methods to the calculation of molecular
hyperpolarizability has sometimes been questioned[30] because it
overestimates β. However, that conclusion was mainly achieved by
comparison with different computational methods rather than with
experimental data. As concerns the computation of dipole mo-
ments, it has been shown that hybrid DFT computations with the
same basis set used in this paper systematically overestimate dipole
moments of organic dyes with electron-donor and-acceptor groups
by an average factor of 1.4 with respect to experimental ones.[31]
Notwithstanding these shortcomings, recent work has shown that
this computational method is suitable, at least, for comparative
purposes, for use with chromophores of similar structures.[32]
[12]
[13]
[14]
[15]
A. Carella, A. Castaldo, R. Centore, A. Fort, A. Sirigu, A.
Tuzi, J. Chem. Soc. Perkin Trans. 2 2002, 1791.
a) E. M. Cross, K. M. White, R. S. Moshrefzadeh, C. V. Fran-
cis, Macromolecules 1995, 28, 2526; b) C. Samyn, T. Verbiest,
E. Kesters, K. Van der Broeck, M. Van Beylen, A. Persoons,
Polymer 2000, 41, 6049; c) K. Van der Broeck, T. Verbiest, J.
Degryse, M. Van Beylen, A. Persoons, C. Samyn, Polymer
2001, 42, 3315; d) A. Carella, R. Centore, A. Fort, A. Peluso,
A. Tuzi, Eur. J. Org. Chem. 2004, 2620.
a) P. Ambrosanio, R. Centore, S. Concilio, B. Panunzi, A. Si-
rigu, N. Tirelli, Polymer 1999, 40, 4923; b) T. Beltrani, M.
Bösch, R. Centore, S. Concilio, P. Günter, A. Sirigu, Polymer
2001, 42, 4025; c) A. Castaldo, R. Centore, A. Peluso, A. Si-
rigu, A. Tuzi, J. Struct. Chem. 2002, 43, 27; d) P. Persico, R.
Centore, A. Sirigu, M. Casalboni, A. Quatela, F. Sarcinelli, J.
Polym. Sci., A: Polym. Chem. 2003, 41, 1841.
a) H.-Q. Xie, Z.-H. Liu, H. Liu, J.-S. Guo, Polymer 1998, 39,
2393; b) D. H. Choi, J. S. Kang, H. T. Hong, Polymer 2001, 42,
793.
P. R. Varanasi, A. K.-Y. Jen, K. Y. Wong, Polym. Prepr. (Am.
Chem. Soc. Div. Polym. Chem.). 1994, 35, 168.
a) A. A. El-Emam, M. A. Moustafa, H. I. El-Subbagh, M. B.
El-Ashmawy, Monatsh. Chem. 1990, 121, 221; b) Z. Y. Zhang,
X. W. Sun, Heterocycles 1998, 48, 561; c) Z. Wang, H. Shi, H.
Shi, J. Heterocycl. Chem. 2001, 38, 355.
a) L. R. Dalton, A. W. Harper, B. H. Robinson, Proc. Natl.
Acad. Sci. USA 1997, 94, 4842; b) L. Dalton, A. Harper, A.
Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, M. Lee, Ind.
Eng. Chem. Res. 1999, 38, 8.
[16]
Supporting Information (see footnote on the first page of this
article): Kinetic evaluation, EAO determination of linear and non-
linear optical properties, the electro-optical coefficients and calcu-
lated angles are presented.
Acknowledgments
[17]
Thanks are due to Drs. A. Fort and A. Barsella of the CNRS-
GONLO of Strasbourg (France) for use of the EFISH facility. Fin-
ancial support from the European Community through the Odeon
project (FP6-505478-1) is also acknowledged.
[18]
[19]
[1] a) L. A. Cuccia, J.-M. Lehn, J.-C. Homo, M. Schmutz, Angew.
Chem. Int. Ed. 2000, 39, 1; b) V. Berl, I. Huc, R. G. Khoury,
J.-M. Lehn, Chem. Eur. J. 2001, 7, 2810.
[2] a) X. Wu, S. Ding, Q. Ding, N. S. Gray, P. G. Schultz, J. Am.
Chem. Soc. 2004, 126, 1590; b) C. Gey, A. Giannis, Angew.
Chem. Int. Ed. 2004, 43, 3998; c) V. Åberg, F. Almqvist, Org.
Biomol. Chem. 2007, 5, 1827.
[3] a) S. Tanaka, Y. Yamashita, Synth. Met. 1993, 55, 1251; b)
S. Tanaka, Y. Yamashita, Synth. Met. 1995, 69, 599; c) R. D.
McCullogh, Adv. Mater. 1998, 10, 93.
[4] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
[5] a) A. Dhanabalan, J. K. J. van Duren, P. A. van Hal, J. L. J.
van Dongen, R. A. J. Janssen, Adv. Funct. Mater. 2001, 11, 255;
b) C. J. Brabec, Solar Energ. Mater. Solar Cells 2004, 83, 273.
[6] a) L. Dalton, Adv. Polym. Sci. 2002, 158, 1; b) L. R. Dalton,
J. Phys. Condens. Matter 2003, 15, R897.
[20]
[21]
[22]
[23]
S. Fusco, R. Centore, P. Riccio, A. Quatela, G. Stracci, G. Ar-
chetti, H.-G. Kuball, Polymer 2008, 49, 186.
a) E. Hoggarth, J. Chem. Soc. 1952, 4811; b) J. R. Reid, N. D.
Heindel, J. Heterocycl. Chem. 1976, 13, 925.
a) B. Marcandalli, L. Pellicciari-Di Liddo, C. Di Fede, I. R.
Bellobono, J. Chem. Soc. Perkin Trans. 2 1984, 589; b) S. Yu.
Grebenkin, B. V. Bol’shakov, Chem. Phys. 1998, 234, 239; c)
W. A. Sokalski, R. W. Góra, W. Bartkowiak, P. Kobylin´ski, J.
Sworakowski, A. Chyla, J. Leszczyn´ski, J. Chem. Phys. 2001,
114, 5504.
[24]
[25]
A. Willets, J. E. Rice, D. M. Burland, J. Chem. Phys. 1992, 97,
7590.
W. Liptay, Angew. Chem. Int. Ed. Engl. 1969, 8, 177.
[7] J. L. Oudar, D. S. Chemla, J. Chem. Phys. 1977, 66, 2664.
[8] a) P. R. Varanasi, A. K. Y. Jen, J. Chandrasekhar, I. N. N.
Namboothiri, A. Rathna, J. Am. Chem. Soc. 1996, 118, 12443;
3542
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 3535–3543