Organic Letters
Letter
Chem. Soc. 2007, 129, 14164−14165. (d) Kuninobu, Y.; Yamauchi, K.;
Tamura, N.; Seiki, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 1520−
1522.
(4) Selected examples using organometallics: (a) Hirone, N.; Sanjiki,
H.; Tanaka, R.; Hata, T.; Urabe, H. Angew. Chem., Int. Ed. 2010, 49,
activation energy of the silylation path also shows correlation to
the 4-substituent (Figure 4b), indicating that an electron-
withdrawing substituent stabilized the aryllithium intermediate
and hence retarded the silylation relative to the protonation
pathway. This is opposite to the one found for the C−X
cleavage. The experimental observation in Figure 2a is thus
supported.16
In summary, we have generated a transient LiH species under
mild conditions from air stable reagents and discovered its
ability to reductively silylate aromatic and alkenyl halides. The
silylation reaction reported here shows some resemblance to
the C−H silylation reported by Stoltz and Grubbs,17 which
proceeds however under markedly different conditions and
presumably through different mechanisms.18 Several puzzling
reactivity profiles found in the synthetic experiments were
reconciled by the mechanism proposed with the aid of theory,
which will provide useful guidelines for future development of
new alkali metal hydride chemistry.
7762−7764. (b) Fridel−Crafts C−H silylation: Bahr, S.; Oestreich, D.
̈
Angew. Chem., Int. Ed. 2017, 56, 52−59 and references therein.
(c) Marciniec, B. Hydrosilylation: A Comprehensive Review on Recent
Advances; Springer Science; 2009, 1−418.
(5) Lesbani, A.; Kondo, H.; Yabusaki, Y.; Nakai, M.; Yamanoi, Y.;
Nishihara, H. Chem. - Eur. J. 2010, 16, 13519−13527.
(6) A review for the silylation reaction: (a) Xu, Z.; Xu, L. W.
ChemSusChem 2015, 8, 2176−2179. (b) Sharma, R.; Kumar, R.;
Kumar, I.; Singh, B.; Sharma, U. Synthesis 2015, 47, 2347−2366.
(c) Xu, Z.; Huang, W. S.; Zhang, J.; Xu, L. W. Synthesis 2015, 47,
3645−3668.
(7) Dehydrogenative silylation with solid bases including metal
alkoxides and hydrosilanes: (a) Calas, R.; Bourgeois, P. C. R. Acad. Sci.,
Paris, Ser. C 1969, 268, 3645−3668. (b) Baba, T.; Kato, A.; Ono, Y.
Catal. Today 1998, 44, 271−276. (c) Itoh, M.; Iwata, K.; Inoue, K. J.
Organomet. Chem. 1994, 476, C30−C31. (d) Ishikawa, J. I.; Inoue, K.;
Itoh, M. J. Organomet. Chem. 1998, 552, 303−311. (e) Ishikawa, J. I.;
Itoh, M. J. Organomet. Chem. 1998, 552, 303−311.
(8) Metal-alkoxide mediated silylation of aryl halides: Dervan, P. B.;
Shippey, M. A. J. Org. Chem. 1977, 42, 2654−2655.
(9) The reaction vessel was connected to atmospheric air through a
column of anhydrous CaCl2.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(10) ICP analysis revealed only a trace amount of transition metal
contamination. Addition of a catalytic amount of a transition metal did
not accelerate the reaction. Use of several lithium tert-butoxides from
different sources gave the same results. See SI for details.
Experimental procedures and physical properties of the
AUTHOR INFORMATION
Corresponding Authors
́
(11) (a) Pan, X.; Lacote, E.; Lalevee, J.; Curran, P. D. J. Am. Chem.
■
Soc. 2012, 134, 5669−5674. (b) Zhou, B.; Sato, H.; Ilies, L.;
Nakamura, E. ACS Catal. 2018, 8, 8−11.
ORCID
(12) For a list of substrates investigated, see SI.
(13) (a) Shirakawa, E.; Hayashi, Y.; Itoh, K.; Watabe, R.; Uchiyama,
N.; Konagaya, W.; Masui, S.; Hayashi, T. Angew. Chem., Int. Ed. 2012,
51, 218−221. (b) Yamamoto, E.; Ukigai, S.; Ito, H. Chem. Sci. 2015, 6,
2943−2951.
(14) For a detailed discussion, see SI.
(15) Attempts to trap this anionic species failed, maybe due to its
short lifetime. See Scheme S8 in SI.
Present Address
†RIKEN Center for Sustainable Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan.
Notes
(16) The reactivity difference between different substrates (i.e.,
bromobenzene vs iodobenzene) is well explained by the proposed
mechanism. See Table S1 in the SI.
(17) (a) Fedorov, A.; Toutov, A. A.; Swisher, N. A.; Grubbs, R. H.
Chem. Sci. 2013, 4, 1640−1645. (b) Toutov, A. A.; Liu, W. B.; Betz, K.
N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80−84.
(c) Toutov, A. A.; Liu, W. B.; Betz, K. N.; Stoltz, B. M.; Grubbs, R. H.
Nat. Protoc. 2015, 10, 1897−1903. Toutov, A. A.; Salata, M.; Fedorov,
A.; Shabaker, J. W.; Houk, K. N.; Grubbs, R. H. Nat. Energy 2017, 2,
17008.
(18) (a) Liu, W.-B.; Schuman, D. P.; Yang, Y.-F.; Toutov, A. A.;
Liang, Y.; Klare, H. F. T.; Nesnas, N.; Oestreich, M.; Blackmond, D.
G.; Virgil, S. C.; Banerjee, S.; Zare, R. N.; Grubbs, R. H.; Houk, K. N.;
Stoltz, B. M. J. Am. Chem. Soc. 2017, 139, 6867−6879. (b) Banerjee,
S.; Yang, Y.-F.; Jenkins, I. D.; Liang, Y.; Toutov, A. A.; Liu, W.-B.;
Schuman, D. P.; Grubbs, R. H.; Stoltz, B. M.; Krenske, E. H.; Houk, D.
P.; Zare, R. N. J. Am. Chem. Soc. 2017, 139, 6880−6887.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank MEXT for financial support KAKENHI (15H05754
for E.N. and JP26708011 to L.I.). T.Y. thanks the University of
Tokyo’s “Evonik Scholars Fund” Scholarship. This work was
partially supported by CREST, JST (Molecular Technology).
We thank for Dr. Yasukawa Tomohiro (The University of
Tokyo) for assistance with the ICP-AES analysis.
REFERENCES
■
(1) (a) Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S.
Angew. Chem., Int. Ed. 2016, 55, 3719−3723. (b) Hong, Z.; Ong, D. Y.;
Muduli, S. K.; Too, P. C.; Chan, G. H.; Tnay, Y. L.; Chiba, S.;
Nishiyama, Y.; Hirao, H.; Soo, H. S. Chem. - Eur. J. 2016, 22, 7108−
7114. (c) Ong, D. Y.; Tejo, C.; Xu, K.; Hirao, H.; Chiba, S. Angew.
Chem., Int. Ed. 2017, 56, 1840−1844.
(2) Ilies, L.; Yoshida, T.; Nakamura, E. J. Am. Chem. Soc. 2012, 134,
16951−16954.
(3) For example: (a) Corey, J. Y. Adv. Organomet. Chem. 2004, 51,
1−52. (b) Nakajima, Y.; Shimada, S. RSC Adv. 2015, 5, 20603−20616.
(c) Fukazawa, A.; Li, Y.; Yamaguchi, S.; Tsuji, H.; Tamao, K. J. Am.
D
Org. Lett. XXXX, XXX, XXX−XXX