ORGANIC
LETTERS
2009
Vol. 11, No. 17
3802-3805
One-Step Synthesis of Complex
Nitrogen Heterocycles from Imines and
Alkyl-Substituted Maleic Anhydrides
Yuchen Tang, James C. Fettinger, and Jared T. Shaw*
Department of Chemistry, UniVersity of California, One Shields AVenue,
DaVis, California 95616
Received May 11, 2009
ABSTRACT
Substituted maleic anhydrides react with imines to form polycyclic lactam products. Diastereoselectivity can be controlled by altering the
reaction conditions in some cases, and regiochemistry is dictated by the structure of the allylic substituents on the anhydride. Cyclic imines,
including dihydro-ꢀ-carbolines and dihydroisoquinolines, exhibit the highest level of reactivity in these new annulation reactions.
Five-membered ring heterocycles are common structural
subunits in polycyclic natural products1 and medicinal leads.2
A one-step synthesis of γ-lactams is possible from imines
and succinic anhydrides through a formal cycloaddition
process, as first demonstrated by Castagnoli.3 Favorable
substrates for this reaction have substituents, such as an
aromatic ring, capable of stabilizing an enolate intermediate
formed from iminolysis of the anhydride.4 Our own studies
revealed that a thioether substituent enabled the synthesis
of γ-lactams in high yield and with a high level of
diastereoselectivity.5 The acylation step was shown to be
reversible, and this finding led to the discovery of a new
four-component synthesis of γ-lactams.6 Our ongoing studies
of the iminolysis mechanism prompted us to explore the
possibility of accessing a zwitterionic enolate intermediate
from a maleic anhydride by a prototropic shift to provide
allylic stabilization (Scheme 1). We envisioned that zwitte-
rion 3, resulting from iminolysis of anhdyride 2, could
isomerize to 4. Attack of the R- or γ-position of the dienolate
(1) (a) Yang, Y.-L.; Chang, F.-R.; Wu, Y.-C. HelV. Chim. Acta 2004,
87, 1392–1399. (b) Williams, D. E.; Davies, J.; Patrick, B. O.; Bottriell,
H.; Tarling, T.; Roberge, M.; Andersen, R. J. Org. Lett. 2008, 10, 3501–
3504. (c) Sano, T.; Toda, J.; Kashiwaba, N.; Ohshima, T.; Tsuda, Y. Chem.
Pharm. Bull. 1987, 35, 479–500. (d) Raheem, I. T.; Thiara, P. S.; Peterson,
E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404–13405.
(2) (a) Keith, J. M.; Gomez, L. A.; Barbier, A. J.; Wilson, S. J.; Boggs,
J. D.; Lord, B.; Mazur, C.; Aluisio, L.; Lovenberg, T. W.; Carruthers, N. I.
Bioorg. Med. Chem. Lett. 2007, 17, 4374–4377. (b) Hoefgen, B.; Decker,
M.; Mohr, P.; Schramm, A. M.; Rostom, S. A. F.; El-Subbagh, H.;
Schweikert, P. M.; Rudolf, D. R.; Kassack, M. U.; Lehmann, J. J. Med.
Chem. 2006, 49, 760–769. (c) Bertrand, M.; Poissonnet, G.; Theret-Bettiol,
M. H.; Gaspard, C.; Werner, G. H.; Pfeiffer, B.; Renard, P.; Leonce, S.;
Dodd, R. H. Bioorg. Med. Chem. 2001, 9, 2155–2164. (d) Le Quement,
S. T.; Nielsen, T. E.; Meldal, M. J. Comb. Chem. 2007, 9, 1060–1072.
(3) Castagnoli, N., Jr. J. Org. Chem. 1969, 34, 3187–3189.
(4) (a) Cushman, M.; Madaj, E. J. J. Org. Chem. 1987, 52, 907–915.
(b) Masse, C. E.; Ng, P. Y.; Fukase, Y.; Sanchez-Rosello, M.; Shaw, J. T.
J. Comb. Chem. 2006, 8, 293–296. (c) Gonzalez-Lopez, M.; Shaw, J. T.
Chem. ReV. 2009, 109, 164–189.
(5) Ng, P. Y.; Masse, C. E.; Shaw, J. T. Org. Lett. 2006, 8, 3999–4002.
(6) Wei, J.; Shaw, J. T. Org. Lett. 2007, 9, 4077–4080.
10.1021/ol901018k CCC: $40.75
Published on Web 08/10/2009
2009 American Chemical Society