Y. Zhang, R. Zhao, R. L.-Y. Bao, L. Shi
FULL PAPER
Hayakawa, M. G. Bures, L.-L. Shen, Antimicrob. Agents Chem-
other. 1996, 40, 1775–1784; c) A. R. Katritzky, S. Rachwal, B.
Rachwal, Tetrahedron 1996, 52, 15031–15070; d) J. M. Nelson,
T. M. Chiller, J. H. Powers, F. Angulo, Clin. Infect. Dis. 2007,
44, 977–980; e) V. Sridharan, P. A. Suryavanshi, J. C. Menndez,
Chem. Rev. 2011, 111, 7157–7259; f) T. A. Rano, E. S. McMas-
ter, P. D. Pelton, M. Yang, K. T. Demarest, G.-H. Kuo, Bioorg.
Med. Chem. Lett. 2009, 19, 2456–2460; g) T. A. Rano, G.-H.
Kuo, Org. Lett. 2009, 11, 2812–2815.
For selected reviews on asymmetric hydrogenation to access
tetrahydroquinolines and dihydro-2H-1,4-benzoxazines, see: a)
F. Glorius, Org. Biomol. Chem. 2005, 3, 4171–4175; b) S.-M.
Lu, X.-W. Han, Y.-G. Zhou, Chin. J. Org. Chem. 2005, 25, 634–
640; c) Y.-G. Zhou, Acc. Chem. Res. 2007, 40, 1357–1366; d)
N. Fleury-Brégeot, V. de la Fuente, S. Castillón, C. Claver,
ChemCatChem 2010, 2, 1346–1371; e) M. Rueping, E. Sugiono,
F. R. Schoepke, Synlett 2010, 6, 852–865; f) M. Rueping, J.
Dufour, F. R. Schoepke, Green Chem. 2011, 13, 1084–1105; g)
J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713–
1760; h) D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem.
Rev. 2012, 112, 2557–2590; i) S. Rossi, M. Benaglia, E. Mas-
solo, L. Raimondi, Catal. Sci. Technol. 2014, 4, 2708–2723; j)
A. K. Mutyala, N. T. Patil, Org. Chem. Front. 2014, 1, 582–
586.
For selected examples of benzoxazines, see: a) K. Satoh, M.
Inenaga, K. Kanai, Tetrahedron: Asymmetry 1998, 9, 2657–
2662; b) K. Gao, C.-B. Yu, D.-S. Wang, Y.-G. Zhou, Adv.
Synth. Catal. 2012, 354, 483–488; c) J. L. Núñez-Rico, A. Vi-
dal-Ferran, Org. Lett. 2013, 15, 2066–2069; For selected exam-
ple of quinolines, see: d) W.-B. Wang, S.-M. Lu, P.-Y. Yang,
X.-W. Han, Y.-G. Zhou, J. Am. Chem. Soc. 2003, 125, 10536–
10537; e) S.-M. Lu, X.-W. Han, Y.-G. Zhou, Adv. Synth. Catal.
2004, 346, 909–912; f) L. Xu, K. H. Lam, J. Ji, J. Wu, Q.-H.
Fan, W.-H. Lo, A. S. C. Chan, Chem. Commun. 2005, 1390–
1392; g) K. H. Lam, L. Xu, L. Feng, Q.-H. Fan, F. L. Lam,
W.-H. Lo, A. S. C. Chan, Adv. Synth. Catal. 2005, 347, 1755–
1758; h) L.-Q. Qiu, F.-Y. Kwong, J. Wu, W.-H. Lam, S.-S.
Chan, W.-Y. Yu, Y. M. Li, R.-W. Guo, Z.-Y. Zhou, A. S. C.
Chan, J. Am. Chem. Soc. 2006, 128, 5955–5965; i) M. T. Reetz,
X. Li, Chem. Commun. 2006, 2159–2160; j) Z.-J. Wang, G.-J.
Deng, Y. Li, Y.-M. He, W.-J. Tang, Q.-H. Fan, Org. Lett. 2007,
9, 1243–1246; k) X.-B. Wang, Y.-G. Zhou, J. Org. Chem. 2008,
73, 5640–5642; l) S.-M. Lu, C. Bolm, Adv. Synth. Catal. 2008,
350, 1101–1105; m) F.-R. Gou, W. Li, X. M. Zhang, Adv.
Synth. Catal. 2010, 352, 2441–2444; n) W. Tang, Y. Sun, L. Xu,
T. Wang, Q. Fan, K.-H. Lam, A. S. C. Chan, Org. Biomol.
Chem. 2010, 8, 3464–3471.
a) Y.-G. Zhou, P.-Y. Yang, X.-W. Han, J. Org. Chem. 2005, 70,
1679–1683; b) C. Wang, C. Li, X. Wu, A. Pettman, J. Xiao,
Angew. Chem. Int. Ed. 2009, 48, 6524–6528; Angew. Chem.
2009, 121, 6646–6650; c) H. Y. Li, J. Horn, A. Campbell, D.
House, A. Nelson, S. P. Marsden, Chem. Commun. 2014, 50,
10222–10224.
T. Wang, L.-G. Zhuo, Z. Li, F. Chen, Z. Ding, Y. He, Q.-H.
Fan, J. Xiang, Z.-X. Yu, A. S. C. Chan, J. Am. Chem. Soc.
2011, 133, 9878–9891.
X.-F. Cai, W.-X. Huang, Z.-P. Chen, Y.-G. Zhou, Chem. Com-
mun. 2014, 50, 9588–9590.
a) Q.-A. Chen, K. Gao, Y. Duan, Z.-S. Ye, L. Shi, Y. Yang, Y.-
G. Zhou, J. Am. Chem. Soc. 2012, 134, 2442–2448; b) Z.-P.
Chen, M.-W. Chen, R.-N. Guo, Y.-G. Zhou, Org. Lett. 2014,
16, 1406–1409.
S. Fleischer, S.-L. Zhou, S. Werkmeister, K. Junge, M. Beller,
Chem. Eur. J. 2013, 19, 4997–5003.
N. T. Patil, V. S. Raut, R. B. Tella, Chem. Commun. 2013, 49,
570–572.
L. Ren, T. Lei, J.-X. Ye, L.-Z. Gong, Angew. Chem. Int. Ed.
2012, 51, 771–774; Angew. Chem. 2012, 124, 795–798.
For selected reviews that incorporate this topic, see: a) D. H.
Paull, C. J. Abraham, M. T. Scerba, E. Alden-Danforth, T.
Lectka, Acc. Chem. Res. 2008, 41, 655–663; b) Z. Shao, H.
Zhang, Chem. Soc. Rev. 2009, 38, 2745–2755; c) M. Rueping,
R. M. Koenigs, L. Atodiresei, Chem. Eur. J. 2010, 16, 9350–
9365; d) C. Zhong, X. Shi, Eur. J. Org. Chem. 2010, 2999–3025;
e) A. E. Allen, D. W. C. MacMillan, Chem. Sci. 2012, 3, 633–
658; f) L. Stegbauer, F. Sladojevich, D. J. Dixon, Chem. Sci.
2012, 3, 942–958; g) C. C. J. Loh, D. Enders, Chem. Eur. J.
2012, 18, 10212–10225; h) Z. Du, Z. Shao, Chem. Soc. Rev.
2013, 42, 1337–1378; i) M. Raynal, P. Ballester, A. Vidal-Fer-
ran, P. W. N. M. van Leeuwen, Chem. Soc. Rev. 2014, 43, 1660–
1733; j) D.-F. Chen, Z.-Y. Han, X.-L. Zhou, L.-Z. Gong, Acc.
Chem. Res. 2014, 47, 2365–2377.
For selected reviews of the metal-free hydrogenation of imines
with Hantzsch esters, see: a) S. G. Ouellet, A. M. Walji,
D. W. C. MacMillan, Acc. Chem. Res. 2007, 40, 1327–1339; b)
S. J. Connon, Org. Biomol. Chem. 2007, 5, 3407–3417; c) S.-L.
You, Chem. Asian J. 2007, 2, 820–827; d) C. Zheng, S.-L. You,
Chem. Soc. Rev. 2012, 41, 2498–2518; for selected reviews of
the metal-free hydrogenation of imines with trichlorosilane, see:
e) S. Guizzetti, M. Benaglia, Eur. J. Org. Chem. 2010, 5529–
5541; f) S. Jones, C. J. A. Warner, Org. Biomol. Chem. 2012, 10,
2189–2200; for selected reviews of the metal-free hydrogenation
of imines with benzothiazolines, see: g) C. Zhu, J. R. Falck,
ChemCatChem 2011, 3, 1850–1851; h) C. Zhu, K. Saito, M.
Yamanaka, T. Akiyama, Acc. Chem. Res. 2015, 48, ar500414x.
X.-W. Liu, C. Wang, Y. Yan, Y.-Q. Wang, J. Sun, J. Org. Chem.
2013, 78, 6276–6280.
[2]
[12]
[3]
[13]
[14]
[15]
Y. Jiang, L.-X. Liu, W.-C. Yuan, X.-M. Zhang, Synlett 2012,
23, 1797–1800.
a) M. Rueping, A. P. Antonchick, T. Theissmann, Angew.
Chem. Int. Ed. 2006, 45, 6751–6755; Angew. Chem. 2006, 118,
6903–6907; b) M. Rueping, E. Sugiono, A. Steck, T.
Theissmann, Adv. Synth. Catal. 2010, 352, 281–287; c) M.
Rueping, T. Bootwicha, E. Sugiono, Beilstein J. Org. Chem.
2012, 8, 300–307.
Z.-X. Zhang, Y.-R. Ji, L. Wojtas, W.-Y. Gao, S.-Q. Ma, M. J.
Zaworotko, J. C. Antilla, Chem. Commun. 2013, 49, 7693–7695.
C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert, A. Thomas,
Adv. Synth. Catal. 2011, 353, 3101–3106.
D. S. Kundu, J. Schmidt, C. Bleschke, A. Thomas, S. Blechert,
Angew. Chem. Int. Ed. 2012, 51, 5456–5459; Angew. Chem.
2012, 124, 5552–5555.
a) M. Rueping, A. P. Antonchick, T. Theissmann, Angew.
Chem. Int. Ed. 2006, 45, 3683–3686; Angew. Chem. 2006, 118,
3765–3768; b) H.-H. Liao, C.-C. Hsiao, E. Sugiono, M. Ruep-
ing, Chem. Commun. 2013, 49, 7953–7955.
Q.-S. Guo, D.-M. Du, J.-X. Xu, Angew. Chem. Int. Ed. 2008,
47, 759–762; Angew. Chem. 2008, 120, 771–774.
A. D. Lackner, A. V. Samant, F. D. Toste, J. Am. Chem. Soc.
2013, 135, 14090–14093.
X.-F. Cai, R.-N. Guo, G.-S. Feng, B. Wu, Y.-G. Zhou, Org.
Lett. 2014, 16, 2680–2683.
A. Aillerie, V. L. De Talancé, A. Moncomble, T. Bousquet, L.
Pélinski, Org. Lett. 2014, 16, 2982–2985.
a) J. Stemper, K. Isaac, V. Duret, P. Retailleau, A. Voituriez,
J.-F. Betzer, A. Marinetti, Chem. Commun. 2013, 49, 6084–
6086; b) K. Isaac, J. Stemper, V. Servajean, P. Retailleau, J.
Pastor, G. Frison, K. Kaupmees, I. Leito, J.-F. Betzer, A. Mari-
netti, J. Org. Chem. 2014, 79, 9639–9646.
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[4]
[5]
[6]
[7]
[25]
[26]
A. Ferry, J. Stemper, A. Marinetti, A. Voituriez, X. Guinchard,
Eur. J. Org. Chem. 2014, 188–193.
For the thiourea-catalyzed transfer hydrogenation of 2-substi-
tuted quinolines with Hantzsch esters in racemic form, see: X.
Qiao, Z. Zhang, Z. Bao, B. Su, H. Xing, Q. Yang, Q. Ren,
RSC Adv. 2014, 4, 42566–42568.
For selected reviews, see: a) S. J. Connon, Angew. Chem. Int.
Ed. 2006, 45, 3909–3912; Angew. Chem. 2006, 118, 4013–4016;
b) T. Akiyama, J. Itoh, J. K. Fuchibe, Adv. Synth. Catal. 2006,
348, 999–1010; c) T. Akiyama, Chem. Rev. 2007, 107, 5744–
5758; d) M. Terada, Chem. Commun. 2008, 4097–4112; e) G.
[8]
[9]
[27]
[10]
[11]
3350
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 3344–3351