10.1002/anie.201904407
Angewandte Chemie International Edition
Wang, G. Ma, J. Li, H. Moehwald, S. Mann, Angew. Chem. 2014, 126,
2398-2402; Angew. Chem. Int. Ed. 2014, 53, 2366-2370; c) K. Liu, R.
Xing, C. Chen, G. Shen, L. Yan, Q. Zou, G. Ma, H. Moehwald, X.
Yan, Angew. Chem. 2015, 127, 510-515; Angew. Chem. Int. Ed. 2015,
54, 500-505; d) J. Xu, B. Zhang, M. Jansen, L. Goerigk, W. W. H.
Wong, C. Ritchie, Angew. Chem. 2017, 129, 14070-14074; Angew.
Chem. Int. Ed. 2017, 56, 13882-13886.
long-time irradiation was also decreased due to the formation of
supramolecular micelles which will trap eosin Y and protect it from
the damage of trace singlet oxygen.[11] All these results suggest that
a light-harvesting system with good ability to catalyze organic
reactions in water was successfully constructed. We believe that this
strategy can also be applied in other light-harvesting systems to
increase the photocatalytic activities of dye photosensitizers.
[5] For light-harvesting systems based on supramolecular self-assembly,
see: a) H.-Q. Peng, Y.-Z. Chen, Y. Zhao, Q.-Z. Yang, L.-Z. Wu, C.-H.
Tung, L.-P. Zhang, Q.-X. Tong, Angew. Chem. 2012, 124, 2130-2134;
Angew. Chem. Int. Ed. 2012, 51, 2088-2092; b) P. Z. Chen, Y. X.
Weng, L. Y. Niu, Y. Z. Chen, L. Z. Wu, C. H. Tung, Q. Z. Yang,
Angew. Chem. 2016, 128, 2809-2813; Angew. Chem. Int. Ed. 2016, 55,
2759-2763; c) Y. Liu, J. Jin, H. Deng, K. Li, Y. Zheng, C. Yu, Y.
Zhou, Angew. Chem. 2016, 128, 8084-8089; Angew. Chem. Int. Ed.
2016, 55, 7952-7957; d) Z. Xu, S. Peng, Y.-Y. Wang, J.-K. Zhang, A.
I. Lazar, D.-S. Guo, Adv. Mater. 2016, 28, 7666-7671; e) X.-S. Ke, T.
Kim, V. M. Lynch, D. Kim, J. L. Sessler, J. Am. Chem. Soc. 2017, 139,
13950-13956; f) J.-J. Li, Y. Chen, J. Yu, N. Cheng, Y. Liu, Adv.
Mater. 2017, 29, 1701905; g) S. Guo, Y. Song, Y. He, X.-Y. Hu, L.
Wang, Angew. Chem. 2018, 130, 3217-3221; Angew. Chem. Int. Ed.
2018, 57, 3163-3167; h) C.-L. Sun, H.-Q. Peng, L.-Y. Niu, Y.-Z. Chen,
L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, Chem. Commun. 2018, 54, 1117-
1120; i) C. Li, J. Zhang, S. Zhang, Y. Zhao, Angew. Chem.
2019,131,1657-1661; Angew. Chem. Int. Ed. 2019, 58, 1643-1647.
In summary, two TPE-based tetragonal prismatic platinum (II)
cages were prepared and characterized by 31P NMR, 1H NMR, ESI-
TOF-MS, UV absorption and fluorescence spectroscopy. Through
the incorporation of PEG chanis on the pillar parts of the
metallacage, it exhibits good water-solubility and is highly emissive
in water. The metallacage was further used as energy donor for
eosin Y to prepare an efficient light-harvesting system in water via a
FRET process. More importantly, the light-harvesting system shows
good photocatalytic activity for cross-coupling hydrogen evolution
reaction, offering the products in the yields almost two-fold of eosin
Y alone. This study not only gives a type of metallacage-based
structures as energy donors for the construction of efficent light-
harvesting systems, but also utilizes the output energy for
photocatalytic reactions to prepare useful hydrocarbons and release
gas, which will pave the way for the fabrication of artificial
photosynthetic systems.
[6] a) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111,
6810-6918; b) M. Han, D. M. Engelhard, G. H. Clever, Chem. Soc.
Rev. 2014, 43, 1848-1860; c) T. R. Cook, P. J. Stang, Chem. Rev.
2015, 115, 7001-7045; d) C. J. Brown, F. D. Toste, R. G. Bergman, K.
N. Raymond, Chem. Rev. 2015, 115, 3012-3035; e) W. Wang, Y. X.
Wang, H. B. Yang, Chem. Soc. Rev. 2016, 45, 2656-2693; f) D. Zhang,
T. K. Ronson, J. R. Nitschke, Acc. Chem. Res. 2018, 51, 2423-2436; g)
S. Chakraborty, G. R. Newkome, Chem. Soc. Rev. 2018, 47, 3991-
4016; h) X. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 2019, 52,
100-109.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21801203 to M. Z.), National Science
Foundation (CHE-1506722 to X. L.), National Institutes of Health
(R01GM128037 to X. L.). M. Z. is thankful for start-up funds from
Xi’an Jiaotong University. We thank Dr. Gang Chang and Yu Wang
at Instrument Analysis Center and Dr. Aqun Zheng and Junjie
Zhang at Experimental Chemistry Center of Xi’an Jiaotong
University for NMR and fluorescence measurements.
[7] a) M. Wang, Y.-R. Zheng, K. Ghosh, P. J. Stang, J. Am. Chem. Soc.
2010, 132, 6282-6283; b) N. Kishi, Z. Li, K. Yoza, M. Akita, M.
Yoshizawa, J. Am. Chem. Soc. 2011, 133, 11438-11441; (c) K. Li, L.-
Y. Zhang, C. Yan, S.-C. Wei, M. Pan, L. Zhang, C.-Y. Su, J. Am.
Chem. Soc. 2014, 136, 4456-4459; d) D. Fujita, Y. Ueda, S. Sato, N.
Mizuno, T. Kumasaka, M. Fujita, Nature 2016, 540, 563-566; e) W.
Cullen, M. C. Misuraca, C. A. Hunter, N. H. Williams, M. D. Ward,
Nat. Chem. 2016, 8, 231-236; f) L. Zhang, L. Lin, D. Liu, Y. J. Lin, Z.
H. Li, G. X. Jin, J. Am. Chem. Soc. 2017, 139, 1653-1660; g) B. Song,
Z. Zhang, K. Wang, C. H. Hsu, O. Bolarinwa, J. Wang, Y. Li, G. Q.
Yin, E. Rivera, H. B. Yang, C. Liu, B. Xu, X. Li, Angew. Chem. 2017,
129, 5342-5346; Angew. Chem. Int. Ed. 2017, 56, 5258-5262; h) P.
Howlader, B. Mondal, P. C. Purba, E. Zangrando, P. S. Mukherjee, J.
Am. Chem. Soc. 2018, 140, 7952-7960; i) L.-X. Cai, S.-C. Li, D.-N.
Yan, L.-P. Zhou, F. Guo, Q.-F. Sun, J. Am. Chem. Soc. 2018, 140,
4869-4876.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: supramolecular chemistry · metallacage · light-
harvesting · photocatalysis · cross-coupling hydrogen evolution
reaction
[1] a) J. Barber, Chem. Soc. Rev. 2009, 38, 185-196; b) H. Lu, N.
Kobayashi, Chem. Rev. 2016, 116, 6184-6261; c) S. J. Mora, E.
Odella, G. F. Moore, D. Gust, T. A. Moore, A. L. Moore, Acc. Chem.
Res. 2018, 51, 445-453; d) B. Zhang, L. Sun, Chem. Soc. Rev. 2019,
48, 2216-2264.
[8] a) X. Yan, T. R. Cook, P. Wang, F. Huang, P. J. Stang, Nat. Chem.
2015, 7, 342-348; b) M. Zhang, M. L. Saha, M. Wang, Z. Zhou, B.
Song, C. Lu, X. Yan, X. Li, F. Huang, S. Yin, P. J. Stang, J. Am.
Chem. Soc. 2017, 139, 5067−5074; c) C. Lu, M. Zhang, D. Tang, X.
Yan, Z. Zhang, Z. Zhou, B. Song, H. Wang, X. Li, S. Yin, H.
Sepehrpour, P. J. Stang, J. Am. Chem. Soc. 2018, 140, 7674-7680.
[2] G. D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat.
Chem. 2011, 3, 763-774.
[9] a) Z. Zhao, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. 2012, 22,
23726-23740; b) J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z.
Tang, Chem. Rev. 2015, 115, 11718-11940.
[3] For reviews, see: a) A. Ajayaghosh, V. K. Praveen, C. Vijayakumar,
Chem. Soc. Rev. 2008, 37, 109-122; b) P. D. Frischmann, K. Mahata,
F. Wurthner, Chem. Soc. Rev. 2013, 42, 1847-1870; c) H.-Q. Peng, L.-
Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, Chem. Rev.
2015, 115, 7502-7542; d) J. K. McCusker, Science 2019, 363, 484-488;
e) T. Xiao, W. Zhong, L. Zhou, L. Xu, X.-Q. Sun, R. B. P. Elmes, X.-
Y. Hu, L. Wang, Chin. Chem. Lett. 2019, 30, 31-36.
[10] a) Q.-Y. Meng, J.-J. Zhong, Q. Liu, X.-W. Gao, H.-H. Zhang, T. Lei,
Z.-J. Li, K. Feng, B. Chen, C.-H. Tung, L.-Z. Wu, J. Am. Chem. Soc.
2013, 135, 19052-19055; b) D. P. Hari, B. Konig, Chem. Commun.
2014, 50, 6688-6699; c) K. Luo, Y.-Z. Chen, W.-C. Yang, J. Zhu, L.
Wu, Org. Lett. 2016, 18, 452-455.
[11] M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233-234,
351-371.
[4] For light-harvesting systems based on covalent bonds, see: a) L. Miao,
J. Han, H. Zhang, L. Zhao, C. Si, X. Zhang, C. Hou, Q. Luo, J. Xu, J.
Liu, Acs Nano 2014, 8, 3743-3751; b) Q. Zou, L. Zhang, X. Yan, A.
4
This article is protected by copyright. All rights reserved.