Scheme 2 Reaction conditions: (a) 2-Cl trityl chloride resin, DIEA, DCM; (b) piperidine–DMF; (c) fmoc-sarcosine, HBTU–DIEA, DMF;
(d) biotin, HBTU–DIEA, NMP–DMF; (e) 2% TFA in DCM; (f) 5, HBTU–DIEA, NMP; (g) NaOH–H2O–MeOH.
NaOH–MeOH–H2O mixture. Following the work-up method
mentioned above the biotin tetra acid was obtained as a white
solid (10). Work is currently under way to attach various
markers and radiolabels to this product, with the future
goal of comparing various signal-to-noise enhancements,
e.g. streptavidin immunohistochemistry, with respect to singly
modified biotin derivatives.
9 Z. Xu and J. S. Moore, Angew. Chem., 1993, 105, 261–264
(Angew. Chem., Int. Ed. Engl., 1993, 32, 246–248).
10 D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos,
S. Martin, J. Roeck, J. Ryder and P. Smith, Polymer, 1985, 17,
117–132; D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos,
S. Martin, J. Roeck, J. Ryder and P. Smith, Macromolecules, 1986,
19, 2466–2468.
11 W. Zhu, B. Okollie, Z. M. Bhujwalla and D. Artemov, Magn.
Reson. Med., 2008, 59, 679–685; V. J. Venditto, C. A. S. Regino
and M. W. Brechbiel, Mol. Pharm., 2005, 2, 302–311.
12 T. Kawaguchi, K. L. Walker, C. L. Wilkins and J. S. Moore,
J. Am. Chem. Soc., 1995, 117, 2159–2165.
13 S. Nara, V. Tripathi, S. K. Chaube, K. Rangari, H. Singh,
K. P. Kariya and T. G. Shrivastav, Talanta, 2008, 77, 210–216.
14 S. M. Sullivan and T. Holyoak, Proc. Natl. Acad. Sci. U. S. A.,
2008, 105, 13829–13834.
15 D. S. Wilbur, D. K. Hamlin, M.-K. Chyan, B. B. Kegley and
P. M. Pathare, Bioconjugate Chem., 2001, 12, 616–623.
16 D. S. Wilbur, D. K. Hamlin, P. M. Pathare and S. A. Weerawarna,
Bioconjugate Chem., 1997, 8, 572–584.
17 E. Haak, H. Siebeneicher and S. Doye, Org. Lett., 2000, 2,
1935–1937; G. A. Artamkina, A. G. Sergeev, M. M. Stern and
I. P. Beletskaya, Synlett, 2006, 235–238; P. Anjanappa, D. Mullick,
K. Selvakumar and M. Sivakumar, TetrahedronLett., 2008, 49,
4585–4587; S. Jaime-Figueroa, Y. Liu, J. M. Muchowski and
D. G. Putman, Tetrahedron Lett., 1998, 39, 1313–1316.
18 X. Huang and S. L. Buchwald, Org. Lett., 2001, 3, 3417–3419;
S. Lee, M. Jorgensen and J. F. Hartwig, Org. Lett., 2001, 3,
2729–2732; R. B. Bedford and M. Betham, Tetrahedron Lett.,
2007, 48, 8947–8950.
19 Y. Shen and G. K. Friestad, J. Org. Chem., 2002, 67, 6236–6239.
20 C. Defieber, M. A. Ariger, P. Moriel and E. M. Carreira, Angew.
Chem., Int. Ed., 2007, 46, 3139–3143; R. Weihofen, O. Tverskoy
and G. Helmchen, Angew. Chem., Int. Ed., 2006, 45, 5546–5549.
21 F. Garro-Helion, A. Merzouk and F. Guibe, J. Org. Chem., 1993,
58, 6109–6113.
22 C. C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel
and R. Haag, Angew. Chem., Int. Ed., 2002, 41, 3964–4000.
23 S. Aimoto, Curr. Org. Chem., 2001, 5, 45–87; Y. Okada, Curr. Org.
Chem., 2001, 5, 1–43.
24 K. M. Galie, A. Mollard and I. Zharov, Inorg. Chem., 2006, 45,
7815–7820; N. Ouali, S. Mery, A. Skoulios and L. Noirez,
Macromolecules, 2000, 33, 6185–6193.
In conclusion, for the first time successful application of
double exponential growth for the synthesis of aliphatic poly-
amide dendrimers has been achieved. Judicious choices of
purification methods not only afforded pure products but also
reduced purification times, thereby enabling faster assembly of
these dendrimer molecules. It was also shown that unactivated
biotin can be efficiently coupled to amino acids in high yields,
using solid-phase techniques. Further work is under way to
couple various markers and labels to the biotin–dendrimer
units, so that their use in various biotechnological applications
can be studied.
Notes and references
z Owing to trace amount of solubility of NaCl in methanol26 an
analytically pure sample could not be obtained. However, H, C and
mass analysis confirmed the product identity.
1 G. R. Newkome and C. D. Shreiner, Polymer, 2008, 49, 1–173.
2 D. K. Smith, Tetrahedron, 2003, 59, 3797–3798.
3 S. Svenson and A. Tomalia Donald, Adv. Drug Delivery Rev., 2005,
57, 2106–2129; C. Dufes, I. F. Uchegbu and A. G. Schaetzlein,
Adv. Drug Delivery Rev., 2005, 57, 2177–2202; H. Yang and
W. J. Kao, J. Biomater. Sci., Polym. Ed., 2006, 17, 3–19;
K. Sadler and J. P. Tam, Rev. Mol. Biotechnol., 2002, 90, 195–229.
4 S.-H. Hwang, C. N. Moorefield and G. R. Newkome, Chem. Soc.
Rev., 2008, 37, 2543–2557; M. Liu, G. Shen, W. Xu and G. Shen,
Polym. Int., 2007, 56, 1432–1439.
5 E. de Jesus and J. C. Flores, Ind. Eng. Chem. Res., 2008, 47,
7968–7981.
6 L. C. Palmer and S. I. Stupp, Acc. Chem. Res., 2008, 41,
1674–1684.
7 K. Yamamoto and K. Takanashi, Polymer, 2008, 49, 4033–4041.
8 C. Hawker and M. J. Frechet, J. Chem. Soc., Chem. Commun.,
1990, 1010–1013; S. M. Grayson and J. M. J. Frechet, Chem. Rev.,
2001, 101, 3819–3867.
25 D. S. Wilbur, P. M. Pathare, D. K. Hamlin, K. R. Buhler and
R. L. Vessella, Bioconjugate Chem., 1998, 9, 813–825.
26 S. P. Pinho and E. A. Macedo, J. Chem. Eng. Data, 2005, 50,
29–32.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4593–4595 | 4595