1 D. J. Patel, A. T. Phan and V. Kuryavyi, Nucleic Acids Res., 2007,
35, 7429; S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd and
S. Neidle, Nucleic Acids Res., 2006, 34, 5402.
2 J. L. Huppert and S. Balasubramanian, Nucleic Acids Res., 2005,
33, 2908; A. K. Todd, M. Johnston and S. Neidle, Nucleic Acids
Res., 2005, 33, 2901; J. L. Huppert and S. Balasubramanian,
Nucleic Acids Res., 2007, 35, 406.
3 A. Siddiqui-Jain, C. L. Grand, D. J. Bearss and L. H. Hurley, Proc.
Natl. Acad. Sci. U. S. A., 2002, 99, 11593; S. Rankin, A. P. Reszka,
J. Huppert, M. Zloh, G. N. Parkinson, A. K. Todd, S. Ladame,
S. Balasubramanian and S. Neidle, J. Am. Chem. Soc., 2005, 127,
10584; H. Fernando, A. P. Reszka, J. Huppert, S. Ladame,
S. Rankin, A. R. Venkitaraman, S. Neidle and
S. Balasubramanian, Biochemistry, 2006, 45, 7854; J. Dai,
T. S. Dexheimer, D. Chen, M. Carver, A. Ambrus, R. A Jones
and D. Yang, J. Am. Chem. Soc., 2006, 128, 1096; S. Cogoi and
L. E. Xodo, Nucleic Acids Res., 2006, 34, 2536.
Fig. 2 CD spectra of a 5 mM solution of G-quadruplex HT4 in Tris
buffer (pH 7.4) with 0–6 equivalents of ligands 3 (A) or 4 (B).
Table 2 IC50 (mM) values of the biaryl polyamides 1–6 against three
different cancer cell lines and a normal cell line (WI38) using the
sulforhodamine B assay
4 S. Kumari, A. Bugaut, J. L. Huppert and S. Balasubramanian,
Nat. Chem. Biol., 2007, 3, 218; S. Kumari, A. Bugaut and
S. Balasubramanian, Biochemistry, 2008, 47, 12664.
5 See recent reviews: C. A. De, L. Lacroix, C. Douarre, N. Temime-
Smaali, C. Trentesaux, J. F. Riou and J. L. Mergny, Biochimie,
2008, 90, 131; D. Monchaud and M.-P. Teulade-Fichou, Org.
Biomol. Chem., 2008, 6, 627; T. M. Ou, Y. J. Lu, J. H. Tan,
Z. S. Huang, K. Y. Wong and L. Q. Gu, ChemMedChem, 2008, 3,
690.
Ligand
MCF7
A549
HT29
WI38
1
2
3
4
5
6
9.4
2.1
12.8
450
3.6
5.9
2.0
3.3
17.0
2.6
2.6
2.5
0.4
2.1
9.2
0.6
2.5
11.8
9.2
25.4
13.2
5.1
2.1
11.6
6 See for example: A. D. Moorhouse, A. M. Santos,
M. Gunaratnam, M. Moore, S. Neidle and J. E. Moses, J. Am.
Chem. Soc., 2006, 128, 15972; W. C. Drewe and S. Neidle, Chem.
Commun., 2008, 5295; J. Dash, P. S. Shirude, S. T. D. Hsu and
S. Balasubramanian, J. Am. Chem. Soc., 2008, 130, 15950;
M. Satyanarayana, S. G. Rzuczek, E. J. Lavoie, D. S. Pilch,
A. Liu, L. F. Liu and J. E. Rice, Bioorg. Med. Chem. Lett.,
2008, 18, 3802.
7 M. J. Moore, F. Cuenca, M. Searcey and S. Neidle, Org. Biomol.
Chem., 2006, 4, 3479.
8 N. Miyaura and A. Suzuki, J. Chem. Soc., Chem. Commun., 1979,
866.
The short-term cell growth inhibitory activity of the biaryl
ligands was evaluated using the sulforhodamine B (SRB) assay
for four different cancer cell lines and a normal human lung
fibroblast cell line (WI38) (Table 2). The ligands generally
showed greater cell growth inhibition against human colorectal
carcinoma (HT29) and human lung carcinoma (A549) lines.
The aim when targeting cancer cells is to achieve selectivity
over normal cells. Although cell culture data can only be
indicative compared to in vivo results, the data here do show
that some ligands, in some cell lines, have significant selectivity.
Compound 3 has the best overall profile, especially for the
A549 and HT29 cell lines. This compound is also the
most effective at stabilizing a human telomeric quadruplex
(Table 1), although further studies will be required to
unequivocally demonstrate that it is targeting telomere
maintenance in tumour cells.
9 B. Guyen, C. M. Schultes, P. Hazel, J. Mann and S. Neidle, Org.
Biomol. Chem., 2004, 2, 981.
10 A terminal G-quartet from the crystal structure of a human
intramolecular telomeric G-quadruplex complexed with
a
naphthalene diimide ligand (PDB id 3CDM) was used as a starting
point to study plausible interactions with biaryl polyamides.
Automated docking studies were carried out using the AutoDock
program v4.0 (D. S. Goodsell, G. M. Morris and A. J. Olson,
J. Mol. Recognit., 1996, 9, 1). A total of 250 independent docking
runs were undertaken to enhance the reliability of the docking
process (R. Wang, Y. Lu and S. Wang, J. Med. Chem., 2003, 46,
2287). Cluster analysis was carried out on the docked results using
a root mean square (RMS) tolerance of 1.0 A. Fig. 1B shows the
ligand G-quartet overlap for the lowest-energy solution.
In summary, we report a new class of G-quadruplex ligands
with high selectivity over duplex DNA. The ligands described
here can be used as a template to attempt to generate
more-potent molecules while retaining this selectivity, as well
as for manipulating their selectivity to favour a particular type
of quadruplex. We note that there is high potential for diversity
in the terminal heterocyclic group, which should also be
amenable to optimization to enhance drug-like characteristics.
11 G. N. Parkinson, M. P. Lee and S. Neidle, Nature, 2002, 417, 876;
A. T. Phan, V. Kuryavyi, K. N. Luu and D. J. Patel, Nucleic Acids
Res., 2007, 35, 6517; A. Ambrus, D. Chen, J. Dai, T. Bialis,
R. A. Jones and D. Yang, Nucleic Acids Res., 2006, 34,
2723; K. W. Lim, S. Amrane, S. Bouaziz, W. Xu, Y. Mu,
D. J. Patel, K. N. Luu and A. T. Phan, J. Am. Chem. Soc., 2009,
131, 4301.
Notes and references
12 N. H. Campbell, G. N. Parkinson, A. P. Reszka and S. Neidle,
J. Am. Chem. Soc., 2008, 130, 6722; G. N. Parkinson, F. Cuenca
and S. Neidle, J. Mol. Biol., 2008, 381, 1145.
z The term biaryl refers to two linked aromatic rings which can be
carbocyclic or heterocyclic, or a combination of both.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4097–4099 | 4099