C O M M U N I C A T I O N S
Scheme 1. Proposed Mechanism
dienyl isocyanates. The process provides access to highly func-
tionalized bicyclo[6.3.0] azocine ring systems with exceptional
enantioselectivities. Further studies on the full scope of this new
process are in progress.
Acknowledgment. We thank the NIGMS (GM080442) for
support. We gratefully acknowledge Johnson Matthey for a loan
of Rh salts.
Supporting Information Available: Experimental procedures,
characterization, 1H and 13C NMR spectra are provided. This material
References
(1) (a) Yet, L. Chem. ReV. 2000, 100, 2963. (b) Nakamura, I.; Yamamoto, Y.
Chem. ReV. 2004, 104, 2127. (c) Evans, P. A. Modern Rhodium-Catalyzed
Organic Reactions; Wiley-VCH; Weinheim, 2005.
(2) For selected references, see:(a) Wender, P. A.; Ihle, N. C. J. Am. Chem.
Soc. 1986, 108, 4678. (b) Wender, P. A.; Tebbe, M. J. Synthesis 1991,
1089. (c) Wender, P. A.; Nuss, J. M.; Smith, D. B.; Sua´rez-Sobrino, A.;
Vågberg, J.; Decosta, D.; Bordner, J. J. Org. Chem. 1997, 62, 4908.
(3) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. J. Am. Chem. Soc. 2000,
122, 7815.
Alkynes possessing functionalities such as silyl ether, phthalimide,
phenyl, and Boc-protected indole at the propargylic positions
(1e-1h) are well tolerated to furnish the [4+2+2] cycloadducts
(3e-3h) in good yields and identical enantioselectivities.14
Cycloaddition of isocyanates with substitution at the diene portion
is also feasible. For example, when 2-methyl dienyl isocyanate 5
is reacted under the standard conditions, [4+2+2] cycloadditions
with various alkynes all proceed uneventfully (6a, 6e, 6j).15
Reactions with aryl alkynes, however, proceed only in moderate
yield. With 1-bromo-4-ethynylbenzene (1i), cycloadduct 3i can only
be obtained in 35% isolated yield with the same high enantiose-
lectivity.
(4) Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem.
Soc. 2002, 124, 2876.
(5) (a) Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N. J. Am. Chem.
Soc. 2002, 124, 8782. (b) Gilbertson, S. R.; DeBoef, B. J. Am. Chem. Soc.
2002, 124, 8784. (c) Varela, J. A.; Castedo, L.; Saa´, C. Org. Lett. 2003, 5,
2841. (d) Evans, P. A.; Baum, E. W. J. Am. Chem. Soc. 2004, 126, 11150.
(e) Evans, P. A.; Baum, E. W.; Fazal, A. N.; Pink, M. Chem. Commun.
2005, 63. (f) Lee, S. I.; Park, S. Y.; Chung, Y. K. AdV. Synth. Catal. 2006,
348, 2531. (g) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc.
2006, 128, 2166. (h) Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2006,
128, 5354. (i) DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J. Org. Chem.
2007, 72, 799. (j) Hilt, G.; Janikowski, J. Angew. Chem., Int. Ed. 2008,
47, 5243.
(6) In their full paper, Gilbertson and coworkers reported a single example of
Several aspects of these findings suggest that there may be a
mechanistic divergence from our previously developed reaction.
Prime among these is the invariant enantioselectivity with regard
to alkyne structure as well as the failure to observe any vinylogous
amide adducts in this chemistry.7b To gain insight into the reaction
mechanism, we conducted a competition experiment between dienyl
isocyanates 2 and 5. If oxidative cycloaddition occurs between the
alkyne and isocyanate first (path a in Scheme 1), the ratio of
products 3 and 6 should be 1:1.7h In the event, 3 is formed with
2:1 selectivity over 6.16 We suggest that this is most consistent
with initial oxidative cyclization between the diene and isocyanate
following path b to form V. Coordination and insertion of alkyne
then provides the [4+2+2] adduct. With more reactive nucleophilic
alkynes, path a becomes competitive forming rhodacycle II. Diene
coordination and insertion are slow, presumably for steric reasons,
allowing competitive alkyne insertion to form pyridone. The diene
found in Z-2 is a poor ligand for Rh and thus prefers path a, leading
to increased amounts of both 4 and pyridone.17
41% ee as the highest selectivity observed. See: ref 5i.
(7) (a) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2782. (b) Yu, R. T.;
Rovis, T. J. Am. Chem. Soc. 2006, 128, 12370. (c) Yu, R. T.; Rovis, T.
J. Am. Chem. Soc. 2008, 130, 3262. (d) Lee, E. E.; Rovis, T. Org. Lett.
2008, 10, 1231. (e) Yu, R. T.; Lee, E. E.; Malik, G.; Rovis, T. Angew.
Chem., Int. Ed. 2009, 48, 2379. (f) Oberg, K. M.; Lee, E. E. Tetrahedron
2009, 65, 5056. (g) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009,
131, 10775. (h) Dalton, D. M.; Oberg, K. M.; Yu, R. T.; Lee, E. E.;
Perreault, S.; Oinen, M. E.; Pease, M. L.; Malik, G.; Rovis, T. Submitted.
(8) Sun, H.; Nikolovska-Coleska, Z.; Lu, J.; Meagher, J. L.; Yang, C.-Y.; Qiu,
S.; Tomita, Y.; Ueda, Y.; Jiang, S.; Krajewski, K.; Roller, P. P.; Stuckey,
J. A.; Wang, S. J. Am. Chem. Soc. 2007, 129, 15279.
(9) For their representative total syntheses, see:(a) Winkler, J. D.; Axten, J. M.
J. Am. Chem. Soc. 1998, 120, 6425. (b) Humphrey, J. M.; Liao, Y.; Ali,
A.; Rein, T.; Wong, Y.-L.; Chen, H.-J.; Courtney, A. K.; Martin, S. F.
J. Am. Chem. Soc. 2002, 124, 8584. (c) Nagata, T.; Nakagawa, M.; Nishida,
A. J. Am. Chem. Soc. 2003, 125, 7484. (d) Young, I. S.; Kerr, M. A. J. Am.
Chem. Soc. 2007, 129, 1465.
(10) (a) Snapper, M. L.; Tallarico, J. A.; Randall, M. L. J. Am. Chem. Soc.
1997, 119, 1478. (b) Sattely, E. S.; Cortez, G. A.; Moebius, D. C.; Schrock,
R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 8526. (c) Duggan,
H. M. E.; Hitchcock, P. B.; Young, D. W. Org. Biomol. Chem. 2005, 3,
2287.
(11) This reaction also forms ∼4% pyridone. Conducting this reaction at 0.06
M in 2 leads to 25% combined yield of 3 and 4 in a 3:1 ratio along with
∼10% pyridone.
The Rh-catalyzed cycloaddition protocol allows access to
synthetically useful bicyclic azocines. Dihydroxylation affords diol
7 in 72% yield for the major diastereomer (7:1 dr, eq 3a).
Alternately, an R,ꢀ-unsaturated aldehyde functionality can be readily
unmasked in two simple steps from 3e, eq 3b.
(12) Further studies on [2+2+2] cycloadditions with various 1,2-disubstituted
alkenyl isocyanates are ongoing.
(13) We observe symmetrical ureas derived from the isocyanate as the only
significant byproduct. No regioisomers have been observed.
(14) Larger scale reactions may be conducted with lower catalyst loading and
slightly higher concentration; with 3 mol % [Rh(C2H4) 2Cl]2 and 6 mol %
L3 at 0.073 M using 1.5 mmol of 2, 3e is formed in 68% yield and 99%
ee.
(15) Substitution at the terminus of the diene leads to only [2+2+2] adduct
under these conditions (E,E-octa-4,6-dienyl isocyanate and 1a afford 4a′
in 46% yield, 46% ee). Bicyclo[6.4.0] systems are not accessible under
these conditions.
(16) At higher catalyst loading (25 mol % [Rh(C2H4)2Cl]2), 3 and 6 are formed
quantitatively in a 4:1 ratio.
(17) At 0.02 M, no pyridone is observed with E-2. At 0.1 M, we see <5%
pyridone (75% yield of 3a). Also see entry 1, Table 1 and ref 11.
In conclusion, we have developed the first enantioselective
rhodium-catalyzed [4+2+2] cycloaddition of terminal alkynes and
JA906641D
9
J. AM. CHEM. SOC. VOL. 131, NO. 37, 2009 13251