K. Spyridonidou et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4810–4813
4813
mization studies and pharmacological investigations are in
progress.
100
75
50
25
0
**
**
Acknowledgments
This Letter is part of the 03ED375 research project, imple-
mented within the framework of the ‘Reinforcement Programme
of Human Research Manpower’ (PENED) and co-financed by Na-
tional and Community Funds (20% from the Greek Ministry of
Development-General Secretariat of Research and Technology
and 80% from E.U.-European Social Fund).
Basal
ANF
ANF + 8
8
Supplementary data
Figure 4. Effect of compound 8 on pGC. Confluent RASMCs were incubated with 8
(100 V) for 30 min. Cells were washed twice with HBSS and then treated with
basal or ANF (1 V) in the presence of IBMX (1 mM) for 15 min. cGMP was
extracted and measured as described in supplementary data. Data are mean-
SEM; n = 4 wells. **P < 0.01 compared to Basal.
Supplementary data associated with this article can be found, in
l
l
s
References and notes
1. Evgenov, O. V.; Pacher, P.; Schmidt, P. M.; Haskó, G.; Schmidt, H. H. H. W.;
Stasch, J.-P. Nat. Rev. Drug Discovery 2006, 5, 755.
should be noted that 8 did not alter baseline cGMP levels in smooth
muscle cells, indicating that this compound does not block basal
sGC activity. This finding suggests that the mechanism of action
of compound 8 might be similar to ODQ, (i.e., heme oxidation), that
only blocks NO-stimulated sGC activity.
2. Fernandes, D.; Sordi, R.; Pacheco, L. K.; Nardi, G. M.; Heckert, B. T.; Villela, C. G.;
Lobo, A. R.; Barja-Fidalgo, C.; Assreuy, J. J. Pharmacol. Exp. Ther. 2009, 328, 991.
3. Mayer, B.; Brunner, F.; Schmidt, K. Eur. Heart J. 1993, 14, 22.
4. Mülsch, A.; Busse, R.; Liebau, S.; Förstermann, U. J. Pharmacol. Exp. Ther. 1988,
247, 283.
5. Marczin, N.; Ryan, U. S.; Catravas, J. D. J. Pharmacol. Exp. Ther. 1992, 263, 170.
6. O’Donnell, M. E.; Owen, N. E. J. Biol. Chem. 1986, 261, 15461.
7. Mayer, B.; Brunner, F.; Schmidt, K. Biochem. Pharmacol. 1993, 45, 367.
8. Lüönd, R. M.; McKie, J. H.; Douglas, K. T. Biochem. Pharmacol. 1993, 45, 2547.
9. Garthwaite, J.; Southam, E.; Boulton, C. L.; Nielsen, E. B.; Schmidt, K.; Mayer, B.
Mol. Pharmacol. 1995, 48, 184.
10. Olesen, S. P.; Drejer, J.; Axelsson, O.; Moldt, P.; Bang, L.; Nielsen-Kudsk, J. E.;
Busse, R.; Mulsch, A. Br. J. Pharmacol. 1998, 123, 299.
11. Schrammel, A.; Behrends, S.; Schmidt, K.; Koesling, D.; Mayer, B. Mol.
Pharmacol. 1996, 50, 1.
12. Wu, S.; Fluxe, A.; Janusz, J. M.; Sheffer, J. B.; Browning, G.; Blass, B.; Cobum, K.;
Hedges, R.; Murawsky, M.; Fang, B.; Fadayel, M. G.; Hare, M.; Djandjighian, L.
Biorg. Med. Chem. Lett. 2006, 16, 5859.
13. Bobbitt, J. M.; Kulkarni, C. L.; Dutta, C. P.; Kofod, H.; Chiong, K. N. J. Org. Chem.
1978, 43, 3541.
14. Fousteris, M. A.; Papakyriakou, A.; Koutsourea, A.; Manioudaki, M.;
Lampropoulou, E.; Papadimitriou, E.; Spyroulias, G. A.; Nikolaropoulos, S. S. J.
Med. Chem. 2008, 51, 1048.
15. Remers, W. A.; Roth, R. H.; Gibs, G. J.; Weiss, M. J. J. Org. Chem. 1971, 36, 1232.
16. Singh, R.; Bhagavateeswaran, H.; Jain, P. C.; Anand, N. Indian J. Chem. B 1982,
21B, 853.
In the context of the above mentioned data it is obvious that
both tricyclic fused 6,7-dihydroindole and indole rings are promis-
ing core structures for novel sGC inhibitors. Preliminary in vitro
evaluation indicates that derivatives bearing five-membered het-
erocycles fused with a 6,7-dihydroindole or an indole ring (com-
pounds 5–8) exhibit significant inhibitory potency. Among them,
the derivatives 7 and 8 bearing a fused phenylpyrrazole and an
isoxazole ring, respectively, showed superior and equipotent, indi-
cating that the pattern and the substitution of the fused heterocy-
clic ring may be varied to some extent. This is in agreement to
previous reports, which have shown that structurally diverse clas-
ses of compounds such as organic phosphates,18 purine and pyrim-
idine nucleotides,19 pyridopyrimidine derivatives,20 halogenated
volatile anesthetics,21 various metalloporphyrins22,23 and the re-
lated biliverdin IX,24 poly-hydroxylated benzylidenemalononitrile
derivatives (tyrphostins)25 and -ascorbic acid26 inhibit sGC. On
L
17. McEvoy, F. J.; Smith, J. M., Jr.; Allen, D. S.. Jr., U.S. Patent 3,404,157, 1968; Chem.
the other hand, comparing the isoxazolo derivatives 5 and 8 it is
concluded that the fully aromatic character of the tricyclic core
of 8 contributes substantially to the enhancement of anti-sGC
activity.
In conclusion, following a simple and versatile synthetic meth-
odology we synthesized a series of new tricyclic indole and dihydr-
oindole derivatives and we evaluated distinct members as sGC
inhibitors. Preliminary results from in vitro studies demonstrate
the potential of these compounds as candidate sCG inhibitors. Spe-
cifically, the isoxazolo[5,4-e]indole derivative 8 represents a prom-
ising hit compound of the series with inhibitory activity in the
micromolar range and selectivity for sGC. Further structural opti-
Abstr. 1966, 65, 20134c.
18. Suzuki, T.; Suematsu, M.; Makino, R. FEBS Lett. 2001, 507, 49.
19. Gille, A.; Lushington, G. H.; Mou, T. C.; Doughty, M. B.; Johnson, R. A.; Seifert, R.
J. Biol. Chem. 2004, 279, 19955.
20. Kots, A. Y.; Choi, B.-K.; Estrella-Jimenez, M. E.; Warren, C. A.; Gilbertson, S. R.;
Guerrant, R. L.; Murad, F. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8440.
21. Masaki, E. Acta Anaesthesiol. Scand. 2000, 44, 321.
22. Serfass, L.; Burstyn, J. N. Arch. Biochem. Biophys. 1998, 359, 8.
23. Dierks, E. A.; Hu, S.; Vogel, K. M.; Yu, A. E.; Spiro, T. G.; Burstyn, J. N. J. Am. Chem.
Soc. 1997, 119, 7316.
24. Koglin, M.; Behrends, S. Biochem. Pharmacol. 2002, 64, 109.
25. Jaleel, M.; Shenoy, A. R.; Visweswariah, S. S. Biochemistry 2004, 43, 8247.
26. Schrammel, A.; Koesling, D.; Schmidt, K.; Mayer, B. Cardiovasc. Res. 2000, 47,
602.