Organic Letters
Letter
(2) Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597.
(3) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J.
Med. Chem. 2010, 53, 7902.
Table 3. Catalyst Recycling in the Olefination Reaction of p-
Anisaldehyde (2a)
a
(4) Janssen, P. A. J.; Lewi, P. J.; Arnold, E.; Daeyaert, F.; de Jonge, M.;
Heeres, J.; Koymans, L.; Vinkers, M.; Guillemont, J.; Pasquier, E.; Kukla,
M.; Ludovici, D.; Andries, K.; de Bethune, M.-P.; Pauwels, R.; Das, K.;
́
Clark, A. D., Jr.; Frenkel, Y. V.; Hughes, S. H.; Medaer, B.; De Knaep, F.;
Bohets, H.; De Clerck, F.; Lampo, A.; Williams, P.; Stoffels, P. J. Med.
Chem. 2005, 48, 1901.
b
run
conversion (%)
isolated yield (%)
Z/E
(5) Mannisto, P. T.; Kaakkola, S. Pharmacol. Toxicol. 1990, 66, 317.
1
2
3
89
90
90
87
85
87
2.3
2.3
2.3
̈
̈
̌ ̌
(6) (a) Zupancic, B.; Kokalj, M. Synthesis 1981, 1981, 913. (b) DiBiase,
S. A.; Lipisko, B. A.; Haag, A.; Wolak, R. A.; Gokel, G. W. J. Org. Chem.
1979, 44, 4640.
a
Reaction conditions: 2a (1 mmol), 3 (10 mmol, 10 equiv), 4 (2
(7) (a) Kiefel, M. J. In Comprehensive Organic Functional Group
TransformationsII;Katritzky,A.R.,Taylor,R.J.K.,Eds.;Elsevier:Oxford,
2005; Vol. 3, pp 657−684. For selected examples, see: (b) Powell, K. J.;
Han, L.-C.; Sharma, P.; Moses, J. E. Org. Lett. 2014, 16, 2158−2161.
(c) Ando, K.; Okumura, M.; Nagaya, S. Tetrahedron Lett. 2013, 54, 2026.
(d)Yin,W.;Wang,C.;Huang,Y.Org.Lett.2013,15,1850.(e)Anbarasan,
P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 519.
(f) Tomioka, T.; Sankranti, R.; Vaughan, T. G.; Maejima, T.; Yanase, T. J.
Org. Chem. 2011, 76, 8053. (g) Obora, Y.; Okabe, Y.; Ishii, Y. Org. Biomol.
Chem. 2010, 8, 4071. (h) Tomioka, T.; Takahashi, Y.; Vaughan, T. G.;
Yanase, T. Org. Lett. 2010, 12, 2171. (i) Zhou, W.; Xu, J.; Zhang, L.; Jiao,
N. Org. Lett. 2010, 12, 2888. (j) Qin, C.; Jiao, N. J. Am. Chem. Soc. 2010,
132, 15893. (k) Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.;
Mizuno, N. Angew. Chem., Int. Ed. 2007, 46, 3922. (l) Nakao, Y.; Yada, A.;
Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428. (m) Kojima, S.;
Fukuzaki, T.; Yamakawa, A.; Murai, Y. Org. Lett. 2004, 6, 3917. (n) D’Sa,
B. A.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1998, 63, 3961. (o) Zhang,
T. Y.; O’Toole, J. C.; Dunigan, J. M. Tetrahedron Lett. 1998, 39, 1461.
(p) Moison, H.; Texier-Boullet, F.; Foucaud, A. Tetrahedron 1987, 43,
537. (q) Furuta, K.; Ishiguro, M.; Haruta, R.; Ikeda, N.; Yamamoto, H.
Bull. Chem. Soc. Jpn. 1984, 57, 2768.
(8) For examples from our research group, see: (a) Strappaveccia, G.;
Angelini, T.;Bianchi, L.;Santoro, S.;Piermatti, O.;Lanari, D.;Vaccaro, L.
Maggi, R.; Pizzo, F.; Gelman, D.; Piermatti, O.; Vaccaro, L. Org. Process
Res. Dev. 2016, 20, 474−479. (c) Ballerini, E.; Curini, M.; Gelman, D.;
Lanari, D.; Piermatti, O.; Pizzo, F.; Santoro, S.; Vaccaro, L. ACS
Sustainable Chem. Eng. 2015, 3, 1221. For an example of in situ activation
of BSA via a fluoride anion, see: (d) Haufe, G.; Suzuki, S.; Yasui, H.;
Terada, C.; Kitayama, T.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed.
2012, 51, 12275.
(9) Determination of the olefin geometry of the major isomers has been
achieved using the “gated decoupling” 13C NMR technique that allows
the coupling constant between the vinylic hydrogen and the nitrilic
carbon of alkenyl nitriles to be observed. The 3JC−H constant found for
such a coupling in test compound 8b (14.3 Hz) is typical of the Z-isomer
according to literature data. For references, see: Sanna, P.; Carta, A.;
Rahbar Nikookar, M. E. Eur. J. Med. Chem. 2000, 35, 535 and citations
therein.
(10) For examples of silazanes activation by fluoride sources, see:
(a) Johnson, D. A. Carbohydr. Res. 1992, 237, 313. (b) Tanabe, Y.;
Murakami, M.; Kitaichi, K.; Yoshida, Y. Tetrahedron Lett. 1994, 35, 8409.
(c) Johnson, D. A.; Taubner, L. M. Tetrahedron Lett. 1996, 37, 605. For
silazanes activation by basic catalysts, see: (d) Tanabe, Y.; Misaki, T.;
Kurihara, M.; Iida, A.; Nishii, Y. Chem. Commun. 2002, 1628.
mmol, 2 equiv); between each run the catalyst was washed 3 times
with dichloromethane, dried with a nitrogen flow, and directly reused.
b
Determined by gas chromatography.
quickly afforded product 1a in good yield (83%), also confirming
the role of the second equivalent of silazane.12
To establish that the fluoride ion is restored to the catalyst, we
tested the possibility of using catalyst 6 for three consecutive
reaction runs (Table 3). Complete retention of the activity was
observed. Moreover, the composition of the catalyst did not show
any appreciable modification, as revealed by elemental analysis.
Thesearchforsimple,effective,andinexpensivemethodologies
for the synthesis of valuable products or intermediates is a topic of
great importance;13 herein, we reported a mild, simple, and
efficient protocol for the synthesis of alkenyl nitriles starting from
aldehydes and simple or substituted acetonitriles. The reaction
requires solvent-free conditions and makes use of a commercially
available and bench stable catalyst (Amberlyst Fluoride) and
silazanes. Preliminaryresultsshowthattheprotocolalsoworkson
ketones, but further investigations are necessary to explore the
scope of the reaction. Finally, the reaction mechanism has been
discussed with support from experiments.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
Characterization data and copies of the 1H and 13C NMR
spectra for all compounds 1a−m, 8a−o, and 10 (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
S.S. gratefully acknowledges the MIUR for financial support
through the fellowship PGR123GHQY. Ms. Florence Valtin
(Erasmus visiting student from the University of Namur) is
gratefully acknowledged for preliminary experiments.
(11) (a) Kawanami, Y.; Yuasa, H.; Toriyama, F.; Yoshida, S.; Baba, T.
Catal. Commun. 2003, 4, 455. (b) Latouche, R.; Texier-Boullet, F.;
Hamelin, J. Tetrahedron Lett. 1991, 32, 1179. (c) Palomo, C.; Aizpurua, J.
́
M.; Lopez, M. C.; Lecea, B. J. Chem. Soc., Perkin Trans. 1 1989, 1692.
(12) We cannot exclude at this stage that the process is initiated by the
formation of HF2− and carbanion 12: Christe, K. O.; Wilson, W. W. J.
Fluorine Chem. 1990, 47, 117.
REFERENCES
■
(1) Fora review, see:(a) Fleming, F. F.; Wang, Q. Chem. Rev. 2003, 103,
2035. For selected examples, see: (b) Lee, K.-S.; Hoveyda, A. H. J. Am.
Chem. Soc. 2010, 132, 2898. (c) Shukla, P.; Hsu, Y.-C.; Cheng, C.-H. J.
Org. Chem. 2006, 71, 655. (d) Yi, C. S.; Yun, S. Y.; He, Z. Organometallics
2003, 22, 3031.
(13) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.;
Grubbs, R. H. Nature 2015, 518, 80.
D
Org. Lett. XXXX, XXX, XXX−XXX