transposition of the allenic substructure from the ꢀ,γ,δ-
position to the adjacent R,ꢀ,γ-position upon elimination of
the silyl group (eq 3). Scope and limitation of this novel
allenic substitution reaction as well as results of mechanistic
studies will be described in detail.
Table 1. Lewis Acid Promoted Intramolecular Cyclization of 1a
yield
(%) of 2/3c
cis/trans
in 3b
entry
1
Lewis acid conversionb (%)
1
2
3
4
5
6
7
8
9d
1a TiCl4
1a AlCl3
1a BF3·OEt2
1a Me3SiOTf
1b TiCl4
1c TiCl4
1d TiCl4
1e TiCl4
1f TiCl4
90
<10
15
75
85
80
80
90
100
50
32 (2a)/30 (3a)
n.d.
33/67
15 (2a)/0
72 (2a)/0
35 (2a)/23 (3a)
38 (2a)/14 (3a)
28 (2a)/28 (3a)
56 (2e)/24 (3e)
12 (2f)/trace
0/0
45/55
n.d.
8/92
31/69
An intermolecular reaction of an (allenylmethyl)silane with
an appropriate electrophile is generally regiospecific and
takes place in an SE2′ fashion to give the corresponding 1,3-
dien-2-yl products.6 By the use of scalemic δ-monosubsti-
tuted (allenylmethyl)silanes, which are axially chiral, unique
axial-to-central chirality transfer was realized with fair
success.7 In the reactions with δ-substituted (allenylmethyl)-
silanes, products were obtained as (E)-isomers predomi-
nantly,6b,7 and the stereoselectivity was explained by steric
repulsion between the δ-substituent and the incoming elec-
trophile in a transition state (Scheme 1).
10e 1g TiCl4
a The reaction was carried out with 1 (0.10 mmol) and Lewis acid (0.20
mmol) in dichloromethane (5.0 mL) at -78 °C for 3 h. b Determined by
1H NMR of the crude product. c Isolated yield by silica gel chromatography.
d Formation of poorly characterized oligomeric products were detected. e The
allene 4 was formed by elimination of acetal.
1a was consumed in 3 h. GC and NMR analyses revealed
that the reaction mixture contained three major products
(entry 1). One was a conjugated vinylcyclohexene 2a (32%
yield) derived by an intramolecular SE2′ pathway. The
formation of 2a was similar to the intermolecular process
shown in Scheme 1; however, the internal olefin in 2a
(the CγdCδ double bond) has a (Z)-configuration due to a
geometric requirement of the cyclohexenyl skeleton in
contrast to the (E)-configuration in intermolecular reaction
products.7b,9 The other two products from the intramolecular
reaction were a diastereomeric pair of allenylcyclopentane
derivatives, cis- and trans-3a (cis/trans ) 33/67),10 in 30%
combined yield. Formation of 3a was totally unpredictable,
and apparently, it was a result of an unprecedented allene-
to-allene rearrangement in the reaction. The allenic moiety
Scheme 1
Intramolecular variants of the electrophilic substitution
reactions of (allenylmethyl)silanes were examined by as-
sembling both an (allenylmethyl)silane and a proelectrophile
moieties into a single molecule. A series of acetal-tethered
(allenylmethyl)silanes 1 was prepared from the corresponding
3-bromo-5-silyl-1,3-pentadienes8 by the Pd-catalyzed reac-
tion according to our previous reports7b,9 (Scheme 2).
(6) (a) Montury, M.; Psaume, B.; Gore´, J. Tetrahedron Lett. 1980, 21,
163. (b) Psaume, B.; Montury, M.; Gore´, J. Synth. Commun. 1982, 12, 409.
(c) Imai, T.; Nishida, S. J. Org. Chem. 1990, 55, 4849. (d) Hatakeyama,
S.; Sugawara, K.; Kawamura, M.; Takano, S. Tetrahedron Lett. 1991, 32,
4509. (e) Hatakeyama, S.; Sugawara, K.; Takano, S. Tetrahedron Lett. 1991,
32, 4513. (f) Hatakeyama, S.; Sugawara, K.; Takano, S. J. Chem. Soc.,
Chem. Commun. 1991, 1533. (g) Hatakeyama, S.; Kawamura, M.; Takano,
S. J. Am. Chem. Soc. 1994, 116, 4081. (h) Hatakeyama, S.; Yoshida, M.;
Esumi, T.; Iwabuchi, Y.; Irie, H.; Kawamoto, T.; Yamada, H.; Nishizawa,
M. Tetrahedron Lett. 1997, 38, 7887. (i) Yu, C.-M.; Yoon, S.-K.; Lee,
S.-J.; Lee, J.-Y.; Kim, S. S. Chem. Commun. 1998, 2749. (j) Luo, M.;
Matsui, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Tetrahedron Lett.
2000, 41, 4401. (k) Parsons, P. J.; Gold, H.; Semple, G.; Montagnon, T.
Synlett 2000, 1184. (l) Pacheco, M. C.; Gouverneur, V. Org. Lett. 2005, 7,
1267. (m) Berkheij, M.; Dijkink, J.; David, O. R. P.; Sonke, T.; IJzendoorn,
D. R.; Blaauw, R. H.; van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra,
H. Eur. J. Org. Chem. 2008, 914.
Scheme 2
(7) (a) Mentink, G.; van Maarseveen, J. H.; Hiemstra, H. Org. Lett. 2002,
4, 3497. (b) Ogasawara, M.; Ueyama, K.; Nagano, T.; Mizuhata, Y.;
Hayashi, T. Org. Lett. 2003, 5, 217.
(8) Roux, M.; Santelli, M.; Parrain, J.-L. Org. Lett. 2000, 2, 1701.
(9) (a) Ogasawara, M.; Ikeda, H.; Hayashi, T. Angew. Chem., Int. Ed.
2000, 39, 1042. (b) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T.
Org. Lett. 2001, 3, 2615. (c) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi,
T. J. Am. Chem. Soc. 2001, 123, 2089. (d) Ogasawara, M.; Ge, Y.; Uetake,
K.; Fan, L.; Takahashi, T. J. Org. Chem. 2005, 70, 3871. (e) Ogasawara,
M.; Nagano, T.; Hayashi, T. J. Org. Chem. 2005, 70, 5764.
Treatment of the acetal-tethered (allenylmethyl)silanes 1
with an appropriate Lewis acid (2 equiv to 1) at -78 °C in
dichloromethane promoted intramolecular electrophilic sub-
stitution (Table 1). With titanium(IV) chloride, ca. 90% of
Org. Lett., Vol. 11, No. 18, 2009
4241