A R T I C L E S
Climent et al.
reported that it is possible to design systems able to achieve
zero release, which can be fully opened on command via
external physical or chemical stimuli. Recently, SMPS-based
systems displaying controlled release have been reported that
contain different caps such as nanoparticles, nanovalves, and
supramolecular frameworks that in most cases use changes in
pH,10 temperature,11 redox potential,12,13 or light14 or rely in
the presence of small molecules15 for uncapping the pores.
by certain carbohydrates,17 there is an almost complete lack of
SMPS-based devices designed to trigger cargo release involving
biomolecules. In order to advance in this field and as a proof-
of-the-concept, we were interested in demonstrating that
antibody-antigen interaction could be a powerful switchable
method to develop tailor-made SMPS for controlled delivery
functions. In particular, and as a part of our interest in the use
of inorganic supports for advanced applications,18 we report here
the design of a new controlled delivery system consisting of a
mesoporous support functionalized on the pore outlets with a
certain hapten able to be recognized by an antibody that acts as
a nanoscopic cap. The opening protocol and delivery of the
entrapped guest is related to a highly effective displacement
reaction involving the presence in the solution of the antigen
to which the antibody is selective.
Despite these examples, the use of SMPS equipped with
gatelike scaffoldings for the preparation of real delivery systems
is still in its infancy. Thus, in relation to gated systems, some
examples still show disadvantages for their potential use in
advanced applications such as lack of operational features in
aqueous environments, use of difficult-to-apply or complex
stimuli, etc. In particular, regardless of very recent reported gated
SMPS that can be uncapped by enzymes16 or can be controlled
Results and Discussion
Design and Synthesis of the Gated Material. As stated above,
the incorporation of gatelike ensembles on mesoporous scaffolds
has proved to be a suitable approach for the development of
nanoscopic solids for mass transport control and for studying
the factors that could influence the design of gating functions.
Apart from molecular and supramolecular models used for the
design of gated supports, we were particularly interested in
designing systems where delivery could be governed by
biomolecules. Thus, our attention was focused on the specific
interaction between antibodies and antigens.19
The proposed paradigm is depicted in Scheme 1. In this
approach, the external surface of a suitable SMPS is first
functionalized with a hapten (solid S1) and then the mesopores
are capped with a certain antibody that shows good affinity and
selectivity toward the anchored hapten via suitable interaction
through the two binding IgG regions of the former (solid S1-
AB). It was expected that the typical size of antibodies (ca. 5.5
nm)20 would be enough to cap the mesopores in the SMPS. As
illustrated in Scheme 1, the presence in the solution of the
corresponding antigen (complementary to the antibody) would
induce the uncapping of the pores and release of the entrapped
guest. In order to study the functional open/close protocol of
the gated ensemble, the dye [Ru(bipy)3]2+ was loaded on the
inner mesopores of the MCM-41 solid. Thus, the state of the
gatelike system is easily monitored via the emission band of
the [Ru(bipy)3]2+ dye at λ ) 610 nm (λex ) 453 nm) in the
aqueous phase. Following this procedure, the solid for delivery
studies was prepared with MCM-41 solid as the SMPS and
sulfathiazole (STZ) as the antigen. Polyclonal sera for STZ were
obtained for this target by immunization of female New Zealand
rabbits with bovine serum albumin (BSA)-protein conjugates
(11) Fu, Q.; Rao, G. V. R.; Ista, L. K.; Wu, Y.; Andrzejewski, B. P.; Sklar,
L. A.; Ward, T. L.; Lo´pez, G. P. AdV. Mater. 2003, 15, 1262.
(12) (a) Trewyn, B. G.; Giri, S.; Slowing, I. I.; Lin, V. S.-Y. Chem.
Commun. 2007, 3236–3245. (b) Trewyn, B. G.; Slowing, I. I.; Giri,
S.; Chen, H.-T.; Lin, V. S.-Y. Acc. Chem. Res. 2007, 40, 846–853.
(c) Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.;
Jeftinija, S.; Lin, V. S.-Y. J. Am. Chem. Soc. 2003, 125, 4451–4459.
(d) Torney, F.; Trewyn, B. G.; Lin, V. S.-Y.; Wang, K. Nat.
Nanotechnol. 2007, 2, 295–300. (e) Radu, D. R.; Lai, C.-Y.; Jeftinija,
K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y. J. Am. Chem. Soc. 2004,
126, 13216–13217. (f) Giri, S.; Trewyn, B. G.; Stellmaker, M. P.;
Lin, V. S.-Y. Angew. Chem., Int. Ed. 2005, 44, 5038–5044. (g)
Slowing, I. I.; Trewyn, B. G.; Lin, V. S.-Y. J. Am. Chem. Soc. 2007,
129, 8845–8849. (h) Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S.-
Y. AdV. Funct. Mater. 2007, 17, 1225–1236. (i) Montera, R.; Vivero-
Escoto, J.; Slowing, I. I.; Garrone, E.; Onida, B.; Lin, V. S.-Y. Chem.
Commun. 2009, 3219–3221.
(13) (a) Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S.-Y. J. Am. Chem.
Soc. 2009, 131, 8398–8400. (b) Hernandez, R.; Tseng, H.-R.; Wong,
J. W.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2004, 126, 3370–
3371. (c) Nguyen, T. D.; Tseng, H.-R.; Celeste, P. C.; Flood, A. H.;
Liu, Y.; Stoddart, J. F.; Zink, J. I. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 10029–10034. (d) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-
F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626–634.
(e) Nguyen, T. D.; Leung, K. C.-F.; Liong, M.; Liu, Y.; Stoddart,
J. F.; Zink, J. I. AdV. Funct. Mater. 2007, 17, 2101–2110. (f) Fujiwara,
M.; Terashima, S.; Endo, Y.; Shiokawa, K.; Ohue, H. Chem. Commun.
2006, 4635–4637. (g) Liu, R.; Zhao, X.; Wu, T.; Feng, P. J. Am. Chem.
Soc. 2008, 130, 14418–14419.
(14) (a) Mal, N. K.; Fujiwara, M.; Tanaka, Y. Nature 2003, 421, 350–
353. (b) Mal, N. K.; Fujiwara, M.; Tanaka, Y.; Taguchi, T.; Matsukata,
M. Chem. Mater. 2003, 15, 3385–3394. (c) Zhu, Y.; Fujiwara, M.
Angew. Chem., Int. Ed. 2007, 46, 2241–2244. (d) Lu, J.; Choi, E.;
Tamanoi, F.; Zink, J. I. Small 2008, 4, 421–426. (e) Angelos, S.; Choi,
E.; Vo¨gtle, F.; De Cola, L.; Zink, J. I. J. Phys. Chem. C 2007, 111,
6589–6592. (f) Liu, N.; Dunphy, D.; Atanassov, P.; Bunge, S. D.;
Chen, Z.; Lo´pez, G. P.; Boyle, T. J.; Brinker, C. J. Nano Lett. 2004,
4, 551–554. (g) Ferris, D. P.; Zhao, Y.-L.; Khashab, N. M.; Khatib,
H. A.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2009, 131, 1686–
1688. (h) Aznar, E.; Casasu´s, R.; Garc´ıa-Acosta, B.; Marcos, M. D.;
Mart´ınez-Ma´n˜ez, R.; Sanceno´n, F.; Soto, J.; Amoro´s, P. AdV. Mater.
2007, 19, 2228–2231. (i) Vivero-Escoto, J. L.; Slowing, I. I.; Wu,
C.-Y.; Lin, V. S.-Y. J. Am. Chem. Soc. 2009, 131, 3462–3463. (j)
Aznar, E.; Marcos, M. D.; Mart´ınez-Ma´n˜ez, R.; Sanceno´n, F.; Soto,
J.; Amoro´s, P.; Guillem, C. J. Am. Chem. Soc. 2009, 131, 6833–6843.
(15) (a) Coll, C.; Casasu´s, R.; Aznar, E.; Marcos, M. D.; Mart´ınez-Ma´n˜ez,
R.; Sanceno´n, F.; Soto, J.; Amoro´s, P. Chem. Commun. 2007, 1957–
1959. (b) Casasu´s, R.; Aznar, E.; Marcos, M. D.; Mart´ınez-Ma´n˜ez,
R.; Sanceno´n, F.; Soto, J.; Amoro´s, P. Angew. Chem., Int. Ed. 2006,
45, 6661–6664. (c) Aznar, E.; Coll, C.; Marcos, M. D.; Mart´ınez-
Ma´n˜ez, R.; Sanceno´n, F.; Soto, J.; Amoro´s, P.; Cano, J.; Ruiz, E.
Chem.sEur. J. 2009, 15, 6877–6888.
(17) Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S.-Y. J. Am. Chem.
Soc. 2009, 131, 8398–8400.
(18) See for instance:(a) Climent, E.; Calero, P.; Marcos, M. D.; Mart´ınez-
Ma´n˜ez, R.; Sanceno´n, F.; Soto, J. Chem.sEur. J. 2009, 15, 1816–
1820. (b) Ros-Lis, J. V.; Casasu´s, R.; Comes, M.; Coll, C.; Marcos,
M. D.; Mart´ınez-Ma´n˜ez, R.; Sanceno´n, F.; Soto, J.; Amoro´s, P.; El
Haskouri, J.; Garro´, N.; Rurack, K. Chem.sEur. J. 2008, 14, 8267–
8278. (c) Comes, M.; Marcos, M. D.; Mart´ınez-Ma´n˜ez, R.; Sanceno´n,
F.; Soto, J.; Villaescusa, L. A.; Amoro´s, P. Chem. Commun. 2008,
3639–3641. (d) Calero, P.; Aznar, E.; Lloris, J. M.; Marcos, M. D.;
Mart´ınez-Ma´n˜ez, R.; Ros-Lis, J. V.; Soto, J.; Sanceno´n, F. Chem.
Commun. 2008, 1668–1670.
(16) (a) Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y.-W.;
Zink, J. I.; Stoddart, J. F. J. Am. Chem. Soc. 2008, 130, 2382–2383.
(b) Schlossbauer, A.; Kecht, J.; Bein, T. Angew. Chem., Int. Ed. 2009,
48, 3092–3095. (c) Bernardos, A.; Aznar, E.; Marcos, M. D.; Mart´ınez-
Ma´n˜ez, R.; Sanceno´n, F.; Soto, J.; Barat, J. M.; Amoro´s, P. Angew.
Chem., Int. Ed. 2009, 48, 5884–5887.
(19) Diamandis, E. P., Christopoulus T. K. Eds.; Immunoassay; Academic
Press: San Diego, CA, 1996.
(20) (a) Silverton, E. W.; Navia, M. A.; Davies, D. R. Proc. Natl. Acad.
Sci. U.S.A. 1977, 74, 5140–5144. (b) Francis, G. E., Delgado, C., Eds.;
Methods in Molecular Medicine, Vol. 25. Drug Targeting: Strategies,
Principles, and Applications; Humana Press, Inc.: Totowa, NJ, 2007.
9
14076 J. AM. CHEM. SOC. VOL. 131, NO. 39, 2009