C O M M U N I C A T I O N S
We close with observations regarding the mechanism of frag-
mentation (Figure 3). In principle, anionic O-triflyl piperidone 22
could give an allene of type 23 or an alkyne of type 24 (cf. Dudley
fragmentation). The corresponding trifluoroacetate salt was treated
with excess PhMgBr in diethyl ether at -20 °C.18,19 Only 23 was
observed after 5 min (>20:1, 23:24, 5% yield, 5% conversion). As
the reaction proceeded, 24 became evident and the ratio of 23:24
gradually decreased. After 1 h the ratio of 23:24 was 3:1 (82%
yield, 82% conversion). The increase in alkyne is readily understood
in terms of the known propensity of terminal allenes to isomerize
to terminal alkynylides under strongly basic conditions.1 These data
demonstrate that fragmentation of this system favors allene over
alkyne formation.
with the anionic nitrogen and, as a result, allene formation becomes
the kinetically more facile pathway.
We have shown that suitably functionalized vinyl triflates serve
as precursors to allenes by way of direct fragmentation or as part
of an addition/cascade reaction. Mechanistic studies provide a
framework for understanding this reaction in relation to other known
modes of fragmentation, and as such, these findings complement
methods of alkene and alkyne synthesis that rely upon C-C
fragmentation. This work is complementary to allene synthesis
methods that use alkyne precursors, provides access to highly
enantioenriched allenes, including cyclic allenes, and is stereospecific.
Acknowledgment. Financial support from Merck & Co. is
gratefully acknowledged.
Supporting Information Available: Complete ref 20a, synthetic
methods, and characterization data. This material is available free of
References
(1) Hashmi, A. S. K. In Modern Allene Chemistry, Vol. 1; Krause, N., Hashmi,
A. S. K., Eds.; Wiley-VCH Verlag: Weinhelm, 2004; pp 3-36.
(2) Ma, S. In Modern Allene Chemistry, Vol. 2; Krause, N., Hashmi, A. S. K.,
Eds.; Wiley-VCH Verlag: Weinhelm, 2004; pp 595-684.
(3) Wei, L.-L.; Xiong, H.; Hsung, R. P Acc. Chem. Res. 2003, 36, 773.
(4) (a) Brummond, K. M.; DeForrest, J. E. Synthesis 2007, 6, 795. (b) Kim,
H.; Williams, L. J. Curr. Opin. Drug DiscoVery DeV. 2008, 11, 870.
(5) (a) Krause, N.; Hoffmann-Roder, A. In Modern Allene Chemistry, Vol. 2;
Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH Verlag: Weinhelm, 2004;
pp 997-1017. (b) Hu, G.; Liu, K.; Williams, L. J. Org. Lett. 2008, 10,
5493.
(6) (a) Corey, E. J.; D’Alarco, M.; Matsuda, S. P.; Lansbury, P. T., Jr.; Yamada,
Y. J. Am. Chem. Soc. 1987, 109, 289. (b) Song, W.-C.; Brash, A. R. Science
1991, 253, 781.
(7) (a) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492 See also.
(b) Ready, J. M.; Pu, X. J. Am. Chem. Soc. 2008, 130, 10874. (c) Furstner,
A.; Mendez, M. Angew. Chem, Int. Ed. 2003, 115, 5513. (d) Burton, B. S.;
von Pechmann, H. Ber. Dtsch. Chem. Ges 1887, 20, 145.
(8) (a) Shangguan, N.; Kiren, S.; Williams, L. J. Org. Lett. 2007, 9, 1093. (b)
Kolakowski, R. V.; Williams, L. J. Tetrahedron Lett. 2007, 48, 4761. (c)
Wang, Z.; Shangguan, N.; Cusick, J. R.; Williams, L. J. Synlett 2008, 2,
213.
Figure 2. Vinyl triflate-to-allene fragmentation.
(9) (a) Prelog, V.; Zalan, E. HelV. Chim. Acta 1944, 27, 535. (b) Prelog, V.;
Haflinger, O. HelV. Chim. Acta 1950, 33, 2021.
(10) Grob, C. A. Angew. Chem., Int. Ed. 1969, 8, 535.
(11) (a) Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. 2005, 127, 5028. (b)
Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. 2006, 128, 6499. (c)
Eschenmoser, A.; Frey, A. HelV. Chim. Acta 1952, 35, 1660.
(12) Foster, A. M.; Agosta, W. C. J. Org. Chem. 1972, 37, 61.
(13) (a) Maity, P.; Lepore, S. D. J. Org. Chem. 2009, 74, 158. (b) Brummond,
K. M.; Dingess, E. A.; Kent, J. L. J. Org. Chem. 1996, 61, 6096. (c)
Brummond, K. M.; Wan, H.; Kent, J. L. J. Org. Chem. 1998, 63, 6535. (d)
Negishi, E. -I.; King, A. O.; Klima, W. L. J. Org. Chem. 1980, 45, 2526.
(e) Negishi, E. -I.; King, A. O.; Tour, J. M. Org. Synth. 1985, 64, 44.
(14) Torres, E.; Larson, G. L.; McGarvey, G. J. Tetrahedron Lett. 1988, 1355.
(15) Sugai, M.; Tanino, K.; Kuwajima, I. Synthesis 1997, 461.
(16) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am.
Chem. Soc. 1989, 111, 4392.
(17) Triflate 15 was derived from enantioenriched Wieland-Miecher Ketone.
(18) See Supporting Information for details.
(19) The immediate fragmentation products (not observed) are imines. Use of
THF accelerated the isomerization process (1 h: 23:24 ) 1:1, 85% yield,
85% conversion).
(20) (a) Frisch, M. J.; Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford,
CT, 2004. Exchange potentials: (b) Becke, A. D. J. Chem. Phys. 1993, 98,
5648. Correlation functional: (c) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV.
B 1988, 37, 785.
Figure 3. Fragmentation and mechanistic insight of vinyl triflate 22.
Why does the allene form faster than the alkyne? Computed
transition states were found for allene and alkyne formation using
B3LYP/6-31G+(2d,2p).20 The δ∆H‡calc for the computed transition
structures TSI and TSII was 2.39 kcal/mol, favoring allene
formation.21,22 Moreover, the optimized ground state energy of 25
indicates, by NBO analysis, a greater positive charge on C5 than
on C1.20a,23 Hence the calculated transition structures are consistent
with a rationale wherein the triflate polarizes the carbon framework.
Despite proper stereoelectronics for both pathways, the sp3 network,
being more polarized than the sp2 network, interacts more strongly
(21) Caution must be exercised in light of the known difficulties in calculating
allene and alkyne ground states. (See: Wodrich, M. D.; Corminboeuf, C.;
Schleyer, P. V. R. Org. Lett. 2006, 8, 3631. ). The good correlation between
∆H‡calc and experiment is likely due in part to the degree of separation that
exists between the transition states and the product ground states.
(22) Transition states for chlorine and fluorine substituted piperidines were
calculated and compared with the bromine substituted TS I (see Supporting
Information). The enthalpy of the reaction for the series was-F 13.5 kcal/
mol,-Cl 9.2 kcal/mol, and-Br 8.3 kcal/mol, consistent with leaving group
ability.
(23) Weinhold, F. Landis, C. Valency and Bonding; Cambridge University Press:
Cambridge, U.K., 2005.
JA906189H
9
J. AM. CHEM. SOC. VOL. 131, NO. 36, 2009 12911