ORGANIC
LETTERS
2009
Vol. 11, No. 19
4434-4436
Rhodium-Mediated Enantioselective
Cyclopropanation of Allenes
Timothy M. Gregg,* Mark K. Farrugia, and John R. Frost
Department of Chemistry and Biochemistry, Canisius College,
Buffalo, New York 14208
Received August 4, 2009
ABSTRACT
Reaction of monosubstituted allenes with aryldiazoacetate esters under dirhodium tetracarboxylate catalysis led to alkylidene cyclopropane
products in 80-90% ee. Monosubstituted alkyl- and arylallene substrates gave 60-75% yield under standard conditions, while yields for
1,1-disubstituted allenes were significantly lower. Cyclopropanation of 1-methyl-1-(trimethylsilyl)allene proceeded in higher yield than other
1,1-disubstituted substrates, suggesting rate enhancement mediated by a significant ꢀ-silicon effect.
Rhodium-stabilized carbenoid reactions are powerful
methods for synthesizing complex organic structures with
high levels of chemo-, diastereo-, and enantioselectivity.1
Cyclopropanation of alkenes with rhodium carbenoids has
been examined systematically, indicating the broad scope
of suitable alkenes and providing important mechanistic
insight into the reaction.2 Although a number of different
allene substrates have been reported in cyclopropanation
reactions,3 there has been no systematic investigation of
the scope of allene derivatives that can be used nor have
there been any reports on the degree of enantioselectivity
that might be feasible given the wide array of available
chiral catalysts.
include: use as mechanism-based enzyme inhibitors,5 use as
conformationally restricted ligand analogues,6 potential for
extending the serum stability of prodrugs,7 and applicability
toward development of cyclopropane and alkylidene cyclo-
propane nucleoside analogues as antiviral agents.8
To extend our understanding of allene cyclopropanation,
we investigated substituent effects and enantioselectivity in
cyclopropanation of allenes using rhodium carbenoids de-
rived from aryldiazoacetate esters (eq 1, Scheme 1).
The carbenoid intermediate derived under such conditions
is well suited for rapid cyclopropanation of styrene, so it
was surprising that reaction of 2 with phenylallene, 1a,
catalyzed by Rh2(S-DOSP)4, 4, with toluene as solvent, gave
A better understanding of allene cyclopropanation will
have an important impact on the chemistry of alkylidene
cyclopropanes (ACP).4 Applications of ACP synthesis
(3) (a) Huval, C. C.; Singleton, D. A. J. Org. Chem. 1994, 59, 2020–
2024. (b) Ma, S.; Zhang, J. Angew. Chem., Int. Ed. 2003, 42, 183–187. (c)
Ma, S.; Lu, L. J. Org. Chem. 2005, 70, 7629–7633. (d) Lu, L.; Chen, G.;
Ma, S. Org. Lett. 2006, 8, 835–838. (e) Yao, T.; Hong, A.; Sarpong, R.
Synthesis 2006, 2006, 3605–3610.
(1) For leading references on cyclopropanation, see: (a) Davies, H. M. L.;
Antoulinakis, E. G. Org. React. 2001, 57, 1–326. (b) Lebel, H.; Marcoux,
J.-F.; Molinaro, C.; Charette, A. B. Chem. ReV. 2003, 103, 977–1050. (c)
Brackmann, F.; de Meijere, A. Chem. ReV. 2007, 107, 4538–4583. For C-H
activation, see: (d) Davies, H. M. L.; Manning, J. R. Nature 2008, 451,
417–424. (e) Liu, Y.; Xiao, W.; Wong, M.-K.; Che, C.-M. Org. Lett. 2007,
9, 4107–4110. (f) Doyle, M. P. Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; pp 341-355.
For carbene-initiated ylide reactions, see: (g) Padwa, A. Progress Heterocycl.
Chem. 2009, 20, 20–46. (h) DeAngelis, A.; Panne, P.; Yap, G. P. A.; Fox,
J. M. J. Org. Chem. 2008, 73, 1435–1439. For O-H instertion, see: (i)
Zhang, W.; Romo, D. J. Org. Chem. 2007, 72, 8939–8942.
(4) ACP references: (a) Lautens, M.; Delanghe, P. H. M. J. Am. Chem.
Soc. 1994, 116, 8526–8535. (b) Brandi, A.; Goti, A. Chem. ReV. 1998, 98,
589–636. (c) Zohar, E.; Stanger, A.; Marek, I. Synlett 2005, 14, 2239–
2241. (d) Scott, M. E.; Schwarz, C. A.; Lautens, M. Org. Lett. 2006, 8,
5521–5524. (e) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. ReV. 2007,
107, 3117–3179.
(5) (a) Cane, D. E.; Bowser, T. E. Bioorg. Med. Chem. Lett. 1999, 9,
1127–1132. (b) Zhao, Z.; Chen, H.; Li, K.; Du, W.; He, S.; Liu, H.-w.
Biochemistry 2003, 42, 2089–2103.
(6) (a) Reichelt, A.; Martin, S. F. Acc. Chem. Res. 2006, 39, 433–442.
(b) Brackmann, F.; de Meijere, A. Chem. ReV. 2007, 107, 4538–4583.
(7) Bender, D. M.; Peterson, J. A.; McCarthy, J. R.; Gunaydin, H.;
Takano, Y.; Houk, K. N. Org. Lett. 2008, 10, 509–511.
(2) (a) Davies, H. M. L.; Panaro, S. A. Tetrahedron 2000, 56, 4871–
4880. (b) Nowlan, D. T.; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A.
J. Am. Chem. Soc. 2003, 125, 15902–15911. (c) Doyle, M. P. J. Org. Chem.
2006, 71, 9253–9260. Howell, J. A. S. Dalton Trans. 2007, 3798–3803.
(8) Zhou, S.; Zemlicka, J.; Kern, E. R.; Drach, J. C. Nucleosides
Nucleotides Nucleic Acids 2007, 26, 231–43.
10.1021/ol9017968 CCC: $40.75
Published on Web 08/27/2009
2009 American Chemical Society