10.1002/anie.202003632
Angewandte Chemie International Edition
COMMUNICATION
Chem. Soc., 2017, 139, 5736-5739; g) M. Silvi, V. K. Aggarwal, J. Am.
Chem. Soc., 2019, 141, 9511-9515.
[11] a) G. Lepore, S. Migdal, D. E. Blagdon, M. Goodman, J. Org. Chem.,
1973, 38, 2590-2594; b) U. Lepore, G. Castronuovo Lepore, P. Ganis, G.
Germain, M. Goodman, J. Org. Chem., 1976, 41, 2134-2137; c) K.
Yamaguchi, G. Matsumura, H. Kagechika, I. Azumaya, Y. Ito, A. Itai, K.
Shudo, J. Am. Chem. Soc., 1991, 113, 5474-5475; d) T. L. Kurth, F. D.
Lewis, J. Am. Chem. Soc., 2003, 125, 13760-13767; e) M. S. Betson, A.
Bracegirdle, J. Clayden, M. Helliwell, A. Lund, M. Pickworth, T. J. Snape,
C. P. Worrall, Chem. Commun., 2007, 754-756; f) J. Clayden, L.
Lemiègre, G. A. Morris, M. Pickworth, T. J. Snape, L. H. Jones, J. Am.
Chem. Soc., 2008, 130, 15193-15202; g) J. Clayden, L. Lemiègre, M.
Pickworth, L. Jones, Org. Biomol. Chem., 2008, 6, 2908-2913; h) J.
Clayden, M. Pickworth, L. H. Jones, Chem. Commun., 2009, 547-549; i)
J. Clayden, H. Turner, Tetrahedron Lett., 2009, 50, 3216-3219.
[3]
For selected examples involving reductive termination, see: a) K. Okada,
K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am. Chem. Soc., 1991, 113,
9401-9402; b) P. Kohls, D. Jadhav, G. Pandey, O. Reiser, Org. Lett.,
2012, 14, 672-675; c) Y. Miyake, K. Nakajima, Y. Nishibayashi, J. Am.
Chem. Soc., 2012, 134, 3338-3341; d) Y. Yasu, T. Koike, M. Akita, Adv.
Synth. Catal., 2012, 354, 3414-3420; e) L. Chu, C. Ohta, Z. Zuo, D. W.
C. MacMillan, J. Am. Chem. Soc., 2014, 136, 10886-10889; f) L. Pitzer,
L. J. Schwarz, F. Glorius, Chem. Sci., 2019, 10, 8285-8291.
[4]
[5]
[6]
a) V. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed., 2017, 56,
10915-10919; Angew. Chem., 2017, 129, 11055-11059; b) J. Hou, A. Ee,
H. Cao, H.-W. Ong, J.-H. Xu, J. Wu, Angew. Chem. Int. Ed., 2018, 57,
17220-17224; Angew. Chem., 2018, 130, 17466-17470.
[12] a) M. W. Wilson, S. E. Ault-Justus, J. C. Hodges, J. R. Rubin,
Tetrahedron, 1999, 55, 1647-1656; b) W. R. Erickson, M. J. McKennon,
Tetrahedron Lett., 2000, 41, 4544; c) A. Kimbaris, J. Cobb, G. Tsakonas,
G. Varvounis, Tetrahedron, 2004, 60, 8807-8815; d) L. H. Mitchell, N. C.
Barvian, Tetrahedron Lett., 2004, 45, 5669-5671; e) T. J. Snape, Chem.
Soc. Rev., 2008, 37, 2452-2458; f) V. Lupi, M. Penso, F. Foschi, F.
Gassa, V. Mihali, A. Tagliabue, Chem. Commun. 2009, 5012-5014; g) F.
Foschi, D. Landini, V. Lupi, V. Mihali, M. Penso, T. Pilati, A. Tagliabue,
Chem. Eur. J., 2010, 16, 10667-10670; h) C. Dey, D. Katayev, K. E. O.
Ylijoki, E. P. Kendig, Chem. Commun., 2012, 48, 10957-10959; i) Y. Liu,
X. Zhang, Y. Ma, C. Ma, Tetrahedron Lett., 2013, 54, 402-405; j) M. Getlik,
B. J. Wilson, M. M. Morshed, I. D. G. Watson, D. Tang, P. Subramanian,
R. Al-awar, J. Org. Chem., 2013, 78, 5705-5710; k) D. Ameen, T. J.
Snape, Eur. J. Org. Chem., 2014, 1925-1934; l) P. Smyslová, K.
Kisseljova, V. Krchňák, ACS Comb. Sci. 2014, 16, 500-505; m) R.
Kosowan, Z. W’Giorgis, R. Grewal, T. E. Wood, Org. Biomol. Chem.,
2015, 13, 6754-6765; n) O. K. Rasheed, I. R. Hardcastle, J. Raftery, P.
Quayle, Org. Biomol. Chem., 2015, 13, 8048-8052; o) V. Giménez-
Navarro, T. Volná, V. Krchňák, ACS Comb. Sci., 2015, 17, 433-436; p)
C. M. Holden, S. M. A. Sohel, M. F. Greaney, Angew. Chem. Int. Ed.,
2016, 55, 2450-2453; Angew. Chem. 2016, 128, 2496-2499; q) S.
Coulibali, T. Godou, S. Canesi, Org. Lett., 2016, 18, 4348-4351; r) A. R.
P. Henderson, J. R. Kosowan, T. E. Wood, Can. J. Chem., 2017, 95,
483-504; s) C. M. Holden, M. F. Greaney, Chem. Eur. J., 2017, 23, 8992-
9008.
a) J. P. Phelan, S. B. Lang, J. S. Compton, C. B. Kelly, Ryan Dykstra, O.
Gutierrez, G. A. Molander, J. Am. Chem. Soc., 2018, 140, 8037-8047; b)
J. A. Milligan, J. P. Phelan, V. C. Polites, C. B. Kelly, G. A. Molander, Org.
Lett., 2018, 20, 6840-6844.
C. Shu, R. S. Mega, B. J. Andreassen, A. Noble, V. K. Aggarwal, Angew.
Chem. Int. Ed., 2018, 57, 15430-15434; Angew. Chem., 2018, 130,
15656-15660.
[7]
[8]
C. Shu, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed., 2019, 58,
3870-3874; Angew. Chem., 2019, 131, 3910-3914.
For selected reviews, see: a) O. Baudoin, Chem. Soc. Rev., 2011, 40,
4902-491; b) A. F. M. Noisier, M. A. Brimble, Chem. Rev., 2014, 114,
8775-8806; c) Z. Huang, H. N. Lim, F. Mo, M. C. Young, G. Dong, Chem.
Soc. Rev., 2015, 44, 7764-7786; d) J. He, M. Wasa, K. S. L. Chan, Q.
Shao, J.-Q. Yu, Chem. Rev., 2017, 117, 8754-8786. For selected
examples, see: e) S. Aspin, A.-S. Goutierre, P. Larini, R. Jazzar, O.
Baudoin, Angew. Chem. Int. Ed., 2012, 51, 10808-10811; f) N. Martin, C.
Pierre, M. Davi, R. Jazzar, O. Baudoin, Chem. Eur. J., 2012, 18, 4480-
4484; g) D. Katayev, M. Nakanishi, T. Bürgi, E. P. Kündig, Chem. Sci.,
2012, 3, 1422-1425; h) T. Saget, N. Cramer, Angew. Chem. Int. Ed.,
2012, 51, 12842-12845; i) R. Shang, L. Ilies, A. Matsumoto, E. Nakamura,
J. Am. Chem. Soc., 2013, 135, 6030-6032; j) M. Li, J. Dong, X. Huang,
K. Li, Q. Wu, F. Song, J. You, Chem. Commun., 2014, 50, 3944-3946; k)
X. Cong, Y. Li, Y. Wei, X. Zeng, Org. Lett., 2014, 16, 3926-3929; l) B.
Wang, W. A. Nack, G. He, S.-Y. Zhang, G. Chen, Chem. Sci., 2014, 5,
3952-3957; m) D. P. Affron, O. A. Davis, J. A. Bull, Org. Lett., 2014, 16,
4956-4959; n) Y. Liu, H. Ge, Nat. Chem., 2017, 9, 26-32; q) B. Perry, T.
F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan,
Nature, 2018, 560, 70-75; r) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett,
A. G. Doyle, D. W. C. MacMillan, Science, 2014, 345, 437; s) J. Twilton,
M. Christensen, D. A. DiRocco, R. T. Ruck, I. W. Davies, D. W. C.
MacMillan, Angew. Chem. Int. Ed., 2018, 57, 5369; Angew. Chem., 2018,
130, 5467; t) R. Alam, G. A. Molander, J. Org. Chem., 2017, 82, 13728;
u) A. Vara, N. R. Patel, G. A. Molander, ACS Catal., 2017, 7, 3955; v) Z.
Zuo, H. Cong, W. Li, J. Choi, G. C. Fu, D. W. C. MacMillan, J. Am. Chem.
Soc., 2016, 138, 1832; w) A. García-Domínguez, R. Mondal, C. Nevado,
Angew. Chem. Int. Ed., 2019, 58, 12286-12290; Angew. Chem., 2019,
131, 12414-12418.
[13] A. M. Fournier, C. J. Nichols, M. A. Vincent, I. H. Hillier, J. Clayden, Chem.
Eur. J., 2012, 18, 16478-16490.
[14] a) J. Clayden, U. Hennecke, Org. Lett., 2008, 10, 3567-3570; b) M. Tait,
M. Donnard, A. Minassi, J. Lefranc, B. Bechi, G. Carbone, P. O’Brien, J.
Clayden, Org. Lett., 2013, 15, 34-37; c) J. Maury, W. Zawodny, J.
Clayden, Org. Lett., 2017, 19, 472-475; d) F. Fernández-Nieto, J. Mas
Roselló, S. Lenoir, S. Hardy, J. Clayden, Org. Lett. 2015, 17, 3838-384;
e) R. K. Saunthwal, M. T. Cornall, R. Abrams, J. W. Ward, J. Clayden,
Chem. Sci., 2019, 10, 3408-3412; f) J. E. Hall, J. V. Matlock, J. W. Ward,
K. V. Gray, J. Clayden, Angew. Chemie Int. Ed., 2016, 55, 11153-11157;
Angew. Chem., 2016, 128, 11319-11323 g) J. E. Hill, J. V. Matlock, Q.
Lefebvre, K. G. Cooper, J. Clayden, Angew. Chem. Int. Ed., 2018, 57,
5788-5791; Angew. Chem., 2018, 130, 5890-5893; h) R. C. Atkinson, D.
J. Leonard, J. Maury, D. Castagnolo, N. Volz, J. Clayden, Chem.
Commun., 2013, 49, 9734-9736; i) K. Tomohara, T. Yoshimura, R.
Hyakutake, P. Yang, T. Kawabata, J. Am. Chem. Soc., 2013,135, 13294-
13297; j) R. C. Atkinson, F. Fernández-Nieto, J. Mas Roselló, J. Clayden,
Angew. Chemie Int. Ed., 2015, 54, 8961-8965; Angew. Chem., 2015, 127,
9089-9093.
[9]
D. J. Leonard, J. W. Ward, J. Clayden, Nature, 2018, 562, 105-109.
[10] a) C. N. Neumann, T. Ritter, Acc. Chem. Res., 2017, 50, 2822-2833; b)
E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat. Chem., 2018,
10, 917-923; c) A. J. J. Lennox, Angew. Chem. Int. Ed., 2018, 57, 14686-
14688; Angew. Chem., 2018, 130, 14898-14900; d) S. Rohrbach, A. J.
Smith, J. Hao Pang, D. L. Poole, T. Tuttle, S Chiba, J. A. Murphy, Angew.
Chem. Int. Ed., 2019, 58, 16368-16388; Angew. Chem., 2019, 131,
16518-16540.
[15] J. Clayden, J. Dufour, D. M. Grainger, M. Helliwell, J. Am. Chem. Soc.,
2007, 129, 7488-7489.
[16] a) D. J. Tetlow, U. Hennecke, J. Raftery, M. J. Waring, D. S. Clarke, J.
Clayden, Org. Lett., 2010, 12, 5442-5445; b) M. B. Tait, P. A. Ottersbach,
D. J. Tetlow, J. Clayden, Org. Proc. Res. Dev., 2014, 18, 1245-1252.
This article is protected by copyright. All rights reserved.