pubs.acs.org/joc
substrate, and subsequent hydrolytic cyclization followed by
One-Pot Synthesis of 2-Pyridones via Chemo- and
Regioselective Tandem Blaise Reaction of Nitriles
with Propiolates
oxidative aromatization of the resulting 3,4-dihydropyridones
with use of DDQ,3 molecular oxygen,4 and HNO25 as oxidants
or by eliminative aromatization employing acetoamino and
benzenetriazolyl leaving groups.6 Alternatively, dienaminoe-
sters prepared by the reaction of β-enaminoester with propio-
late can be cyclized to 2-pyridones.7 As an extension, Savarin
and co-workers have recently reported that the reaction of
N-arylated β-enamino ketones with methyl propiolates yielded
the corresponding N-aryl 5-acyl-2-pyridones, which was utilized
as a common template for naphthyridones and quinolines.8 Al-
though these methods are effective for the synthesis of pyri-
done derivatives, it is a prerequisite to prepare R,β-unsaturated
carbonyl substrates or β-enaminocarbonyl derivatives before-
hand from aldehydes or β-ketocarbonyl compounds, res-
pectively. To improve on this, we devised a tandem one-pot
synthesis of various 2-pyridone derivatives from nitriles via the
Blaise reaction intermediate, which is very efficient in yield and
operationally convenient.
Yu Sung Chun,† Ka Yeon Ryu,† Young Ok Ko,†
Joo Yeon Hong,‡ Jongki Hong,‡ Hyunik Shin,*,§ and
Sang-gi Lee*,†
†Department of Chemistry and Nano Science (BK21),
Ewha Womans University, Seoul 120-750, Korea, ‡College of
Pharmacy, Kyung Hee University, Seoul 130-701, Korea, and
§Chemical Development Division, LG Life Sciences,
Ltd./R&D, Daejeon 305-380, Korea
sanggi@ewha.ac.kr;hisin@lgls.com
Received July 29, 2009
The reaction of the Reformatsky reagent with nitrile, the
so-called Blaise reaction, is known to proceed via a zinc
bromide complex of a β-enamino ester.9 Hydrolytic workup
of this reaction intermediate under acidic or basic conditions
provides the corresponding β-keto esters and β-enamino
esters, which have been engineered to build a variety of
molecules.10 Recently, we were intrigued by the possible
tandem use of the Blaise reaction intermediate as a bidendate
organozinc nucleophile having two nucleophilic atoms, i.e.,
the R-carbon and β-nitrogen to the ester group, and found
that the Blaise reaction intermediate acts as a carbon nu-
cleophile toward anhydrides and terminal alkynes to give
R-acylated and R-vinylated β-enaminoesters, respectively.11
The Blaise reaction intermediate, generated in situ from
Reformatsky reagent and nitrile, reacted with propiolates
in a chemo- and regioselective manner to afford 2-pyr-
idone derivatives in good to excellent yields
Pyridones are embedded as common structural units of many
natural products and biologically active compounds.1 As a
result, the development of efficient synthetic methods for this
class of heterocyclic compounds has become a long-stand-
ing subject in synthetic and medicinal chemistry.2 The most
commonly employed method is Michael addition of aceto-
nitrile derivatives such as cyanoacetate ester, cyanoacetamide,
or malonitrile to an appropriate R,β-unsaturated carbonyl
(3) (a) Chen, Y.; Zhang, H.; Nan, F. J. Comb. Chem. 2004, 6, 684. (b)
Thomas, O. P.; Dumas, C.; Zaparucha, A.; Husson, H.-P. Eur. J. Org. Chem.
2004, 1128.
(4) (a) Carles, L.; Narkunan, K.; Penlou, S.; Rousset, L.; Bouchu, D.;
Ciufolini, M. A. J. Org. Chem. 2002, 67, 4304. (b) Wang, S.; Tan, T.; Li, J.;
Hu, H. Synlett 2005, 2658.
(5) Soto, J. L.; Seoane, C.; Zamorano, P.; Rubio, M. J.; Monforte, A.;
Quinteiro, M. J. Chem. Soc., Perkin Trans. I 1985, 1681.
(6) (a) Katritzky, A. R.; Chassaing, C.; Barrow, S. J.; Zhang, Z.;
Vvedensky, V.; Forood, B. J. Comb. Chem. 2002, 4, 249. (b) Katritzky,
A. R.; Belyakov, S. A.; Sorochinsky, A. E.; Henderson, S. A.; Chen, J. J. Org.
Chem. 1997, 62, 6210. (c) Wang, S.; Sun, J.; Yu, G.; Hu, X.; Liu, J. O.; Hu, Y.
Org. Biomol. Chem. 2004, 2, 1573. (d) Yu, G.; Wang, S.; Wang, K.; Hu, Y.;
Hu, H. Synthesis 2004, 1021.
(7) Anghelide, N.; Draghici, C.; Raileanu, D. Tetrahedron 1974, 30, 623.
(8) Savarin, C. G.; Murry, J. A.; Dormer, P. G. Org. Lett. 2002, 4, 2071.
(9) (a) Blaise, E. E. C. R. Hebd. Seꢀances Acad. Sci. 1901, 132, 478. (b)
C. R. Hebd. Seꢀances Acad. Sci. 1901, 132, 978. (c) Kagan, H. B.; Suen, Y. H.
Bull. Soc. Chim. Fr. 1966, 1819.
(1) (a) Kawato, Y.; Terasawa, H. Prog. Med. Chem. 1997, 34, 69. (b)
Spurr, P. R. Tetrahedron Lett. 1995, 36, 2745. (c) Burner, S.; Canesso, R.;
Widmer, U. Heterocycles 1994, 37, 239. (d) Nadin, A.; Harrison, T. Tetra-
hedron Lett. 1999, 40, 4073. (e) Suzuki, M.; Iwasaki, H.; Fujikawa, Y.;
Sakashita, M.; Kitahara, M.; Sakoda, R. Bioorg. Med. Chem. Lett. 2001, 11,
1285. (f) Glushkov, V. A.; Shklyaev, Y. V. Chem. Heterocycl. Compd. 2001,
37, 663. (g) Petit, G. R.; Meng, Y. H.; Herald, D. L.; Graham, K. A. N.;
Pettit, R. K.; Doubek, D. L. J. Nat. Prod. 2003, 66, 1065. (h) Wang, S.; Cao,
L.; Shi, H.; Dong, Y.; Sun, J.; Hu, Y. Chem. Pharm. Bull. 2005, 53, 67. (i) Pin,
F.; Comesse, S.; Sanselme, M.; Daich, A. J. Org. Chem. 2008, 73, 1975. (j)
Zhou, Y.; Kijima, T.; Kuwahara, S.; Watanabe, M.; Izumi, T. Tetrahedron
Lett. 2008, 49, 3757. (k) Schroeder, G. M.; An, Y.; Cai, Z.-W.; Chen, X.-T.;
Clark, C.; Cornelius, L. A. M.; Dai, J.; Gullo-Brown, J.; Gupta, A.; Henley,
B.; Hunt, J. T.; Jeyaseelan, R.; Kamath, A.; Kim, K.; Lippy, J.; Lombardo,
L. J.; Manne, V.; Oppenheimer, S.; Sack, J. S.; Schmidt, R. J.; Shen, G.;
Stefanski, K.; Tokarski, J. S.; Trainor, G. L.; Wautlet, B. S.; Wei, D.;
Williams, D. K.; Zhang, Y.; Zhang, Y.; Fargnoli, J.; Borzilleri, R. M.
J. Med. Chem. 2009, 52, 1251.
(10) (a) Rathke, M. W.; Weipert, P. In Zinc Enolates: The Reformatsky and
Blaise Reactions in Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: Oxford, UK, 1991; Vol. 2, pp 277-299. (b) Rao, H. S. P.; Rafi, S.;
Padmavathy, K. Tetrahedron 2008, 64, 8037. (c) Ocampo, R.; Dolbier, W. R. Jr.
Tetrahedron 2004, 60, 9325. (d) Hannick, S. M.; Kishi, Y. J. Org. Chem. 1983,
48, 3833. (e) Morelli, C. F.; Manferdini, M.; Veronese, A. C. Tetrahedron 1999,
55, 10803. (f) Mauduit, M.; Kouklovsky, C.; Langlois, Y.; Riche, C. Org. Lett.
ꢁ
2000, 2, 1053. (g) Hoang, C. T.; Bouillere, F.; Johannesen, S.; Zulauf, A.; Panel,
ꢁ
C.; Pouilhes, A.; Gori, D.; Alezra, V.; Kouklovsky, C. J. Org. Chem. 2009, 74,
(2) Reviews on the synthesis of pyridones: (a) McKillop, A.; Boulton, A. In
Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds:
Pergamon Press: New York, 1984; Vol. 2, Part 2A, p 67. (b) Jones, G. In
Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W., Eds.;
Pergamon Press: New York, 1984; Vol. 2, Part 2A, p 395.
4177.
(11) (a) Chun, Y. S.; Lee, K. K.; Ko, Y. O.; Shin, H.; Lee, S.-g. Chem.
Commun. 2008, 5098. (b) Ko, Y. O.; Chun, Y. S.; Park, C.-L.; Kim, Y.; Shin,
H.; Ahn, S.; Hong, J.; Lee, S.-g. Org. Biomol. Chem. 2009, 7, 1132. (c) Chun,
Y. S.; Ko, Y. O.; Shin, H.; Lee, S.-g. Org. Lett. 2009, 11, 3414.
7556 J. Org. Chem. 2009, 74, 7556–7558
Published on Web 09/04/2009
DOI: 10.1021/jo901642t
r
2009 American Chemical Society