Article
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 18 5671
(5) White, N. J. Drug resistance in malaria. Br. Med. Bull. 1998, 54,
703–715. Breman, J. G. The ears of the hippopotamus: manifestations,
determinants, and estimates of the malaria burden. Am. J. Trop. Med.
Hyg. 2001, 64, 1–11.
(23) Santos, M. M. M.; Moreira, R. Michael acceptors as cysteine
protease inhibitors. Mini-Rev. Med. Chem. 2007, 7, 1040–1050.
(24) Matthews, D. A.; Dragovich, P. S.; Webber, S. E.; Fuhrman, S. A.;
Patick, A. K.; Zalman, L. S.; Hendrickson, T. F.; Love, R. A.;
Prins, T. J.; Marakovits, J. T.; Zhou, R.; Tikhe, J.; Ford, C. E.;
Meador, J. W.; Ferre, R. A.; Brwon, E. L.; Binford, S. L.; Brothers,
M. A.; Delisle, D. M.; Worland, S. T. Structure-assisted design of
mechanism-based irreversible inhibitors of human rhinovirus 3C
protease with potent antiviral activity against multiple rhinovirus
serotypes. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11000–11007.
(25) (a) Jung, G.; Beck-Sickinger, A. G. Methoden der multiplen
Peptidsynthese und ihre Anwendungen. Angew. Chem. 1992, 104,
375–391. (b) Balkenhohl, F.; Bussche-Hunnefeld, C. v. d.; Lansky, A.;
Zechel, C. Kombinatorische Synthese niedermolekularer organischer
Verbindungen. Angew. Chem. 1996, 108, 2436–2488.
(6) Rosenthal, P. J. Cysteine proteases of malaria parasites. Int. J.
Parasitol. 2004, 34, 1489–1499.
(7) Caffrey, C. R.; Hansell, E.; Lucas, K. D.; Brinen, L. S.; Hernandez,
A. A.; Cheng, J.; Gwaltney, S. L., II; Roush, W. R.; Stierhof, Y. D.;
Bogyo, M.; Steverding, D.; McKerrow, J. H. Active site mapping,
biochemical properties and subcellular localization of rhodesain,
the major cysteine protease of Trypanosoma brucei rhodesiense.
Mol. Biochem. Parasitol. 2001, 118, 61–73.
(8) Shenai, B. R.; Sijwali, P. S.; Singh, A.; Rosenthal, P. J. Characteri-
zation of native and recombinant falcipain-2, a principal tropho-
zoite cysteine protease and essential hemoglobinase of Plasmodium
falciparum. J. Biol. Chem. 2000, 275, 29000–29010. Sabnis, Y. A.;
Desai, P. V.; Rosenthal, P. J.; Avery, M. A. Probing the structure of
falcipain-3, a cysteine protease from Plasmodium falciparum: compara-
tive protein modeling and docking studies. Protein Sci. 2003, 12, 501–
509.
(9) Rosenthal, P. J.; Sijwali, P. S.; Singh, A.; Shenai, B. R. Cysteine
proteases of malaria parasites: targets for chemotherapy. Curr.
Pharm. Des. 2002, 8, 1659–1672.
(10) Sijwali, P. S.; Rosenthal, P. J. Gene disruption confirms a critical
role for the cysteine protease falcipain-2 in hemoglobin hydrolysis
by Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
4384–4389.
(26) Bayer, E. Towards the chemical synthesis of proteins. Angew.
Chem., Int. Ed. 1991, 30, 113–129.
(27) Meldal, M. PEGA: A flow stable polyethylene glycol dimethyl
acrylamide copolymer for solid phase synthesis. Tetrahedron Lett.
1992, 33, 3077–3080. Auzanneau, F.-I.; Meldal, M.; Bock, K. Synth-
esis, characterization and biocompatibility of PEGA resins. J. Pept.
ꢁ
Sci. 1995, 1, 31–44. Renil, M.; Ferreras, M.; Delaisse, J. M.; Foged, N.
T.; Meldal, M. PEGA supports for combinatorial peptide synthesis and
solid-phase enzymatic library assays. J. Pept. Sci. 1998, 4, 195–210.
(28) Grotli, M.; Gotfredsen, C. H.; Rademann, J.; Burchard, J.; Clark,
A. J.; Duus, J. O.; Meldal, M. Physical properties of poly(ethylene
glycol) (PEG)-based resins for combinatorial solid phase organic
chemistry: a comparison of PEG-cross-linked and PEG-grafted
resins. J. Comb. Chem. 2000, 2, 108–119.
(29) Kim, D.-H.; Lee, H.-Y.; Kim, H.; Kim, H.; Lee, Y.-S.; Park, S. B.
Quantitative evaluation of HiCore resin for the nonspecific binding
of proteins by on-bead colorimetric assay. J. Comb. Chem. 2006, 8,
280–285.
(30) Xiao, X.-Y.; Parandoosh, Z.; Nova, M. P. Design and synthesis of
a taxoid library using radiofrequency encoded combinatorial
chemistry. J. Org. Chem. 1997, 62, 6029–6033. Nicolaou, K. C.;
Pfefferkorn, J. A.; Mitchell, H. J.; Roecker, A. J.; Barluenga, S.; Cao,
G.-Q.; Affleck, R. L.; Lillig, J. E. Natural product-like combinatorial
libraries based on privileged structures. 2. Construction of a 10 000-
membered benzopyran library by directed split-and-pool chemistry
using NanoKans and optical encoding. J. Am. Chem. Soc. 2000,
122, 9954–9967.
(11) Barrett, A. J. Bioinformatics of proteases in the MEROPS data-
sanger.ac.uk/index.htm.
(12) Gelhaus, C.; Vicik, R.; Schirmeister, T.; Leippe, M. Blocking effect
of a biotinylated protease inhibitor on the egress of Plasmodium
falciparum merozoites from infected red blood cells. Biol. Chem.
2005, 386, 499–502. Francis, S. E.; Sullivan, D. J., Jr.; Goldberg, D. E.
Hemoglobin metabolism in the malaria parasite Plasmodium falcipar-
um. Annu. Rev. Microbiol. 1997, 51, 97–123. McKerrow, J. H.; Sun,
E.; Rosenthal, P. J.; Bouvier, J. The proteases and pathogenicity of
parasitic protozoa. Annu. Rev. Microbiol. 1993, 47, 821–853.
(13) Eksi, S.; Czesny, B.; Greenbaum, D. C.; Bogyo, M.; Williamson,
K. C. Targeted disruption of Plasmodium falciparum cysteine
protease, falcipain 1, reduces oocyst production, not erythrocytic
stage growth. Mol. Microbiol. 2004, 53, 243–250.
(14) Singh, A.; Rosenthal, P. J. Selection of cysteine protease inhibitor-
resistant malaria parasites is accompanied by amplification of
falcipain genes and alteration in inhibitor transport. J. Biol. Chem.
2004, 34, 35236–35241.
(15) Ramjee, M. K.; Flinn, N. S.; Pemberton, T. P.; Quibell, M.; Wang,
Y.; Watts, J. P. Substrate mapping and inhibitor profiling of
falcipain-2, falcipain-3 and berghepain-2: implications for pepti-
dase anti-malarial drug discovery. Biochem. J. 2006, 399, 47–57.
(16) St. Hilaire, P. M.; Alves, L. C.; Sanderson, S. J.; Mottram, J. C.;
Juliano, M. A.; Juliano, L.; Coombs, G. H.; Meldal, M. The
substrate specificity of a recombinant cysteine protease from
Leishmania mexicana: application of a combinatorial peptide
library approach. ChemBioChem 2000, 1, 115–122.
(31) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Color test
for detection of free terminal amino groups in the solid-phase
synthesis of peptides. Anal. Biochem. 1970, 34, 595–598.
(32) Attardi, M. E.; Porcu, G.; Taddei, M. Malachite green, a valuable
reagent to monitor the presence of free COOH on the solid-phase.
Tetrahedron Lett. 2000, 41, 7391–7394.
(33) Gutheil, W. G.; Xu, Q. N-to-C solid-phase peptide and peptide
trifluoromethylketone synthesis using amino acid tert-butyl esters.
Chem. Pharm. Bull. 2002, 50, 688–691.
(34) Zhang, L.; Kauffman, G. S.; Pesti, J. A.; Yin, J. Rearrangement of
NR-protected L-asparagines with iodosobenzene diacetate. A prac-
tical route to β-amino-L-alanine derivatives. J. Org. Chem. 1997,
62, 6918–6920.
(17) For a review see: Maly, D. J.; Huang, L.; Ellman, J. A. Combi-
natorial strategies for targeting protein families: application to the
proteases. ChemBioChem 2002, 3, 16–37.
(18) Cuerrier, D.; Moldoveanu, T.; Campbell, R. L.; Kelly, J.; Yoruk,
B.; Verhelst, S. H. L.; Greenbaum, D.; Bogyo, M.; Davies, P. L.
Development of calpain-specific inactivators by screening of posi-
tional scanning epoxide libraries. J. Biol. Chem. 2007, 282, 9600–
9611.
(19) Barrett, A. J.; Kembhavi, A. A.; Brown, M. A.; Kirschke, H.;
Knight, C. G.; Tamai, M.; Hanada, K. L-trans-Epoxysuccinyl-
leucylamido(4-guanidino)butane (E-64) and its analogues as in-
hibitors of cysteine proteinases including cathepsins B, H and L.
Biochem. J. 1982, 201, 189–198.
(35) Smith, H. K.; Bradley, M. Comparison of resin and solution
screening methodologies in combinatorial chemistry and the iden-
tification of a 100 nM inhibitor of trypanothione reductase.
J. Comb. Chem. 1999, 1, 326–332.
(36) Robins, L. I.; Dixon, S. M.; Wilson, D. K.; Kurth, M. J. On-bead
combinatorial techniques for the identification of selective aldose
reductase inhibitors. Bioorg. Med. Chem. 2006, 14, 7728–7735.
(37) Dixon, S. M.; Li, P.; Liu, R.; Wolosker, H.; Lam, K. S.; Kurth,
M. J.; Toney, M. D. Slow-binding human serine racemase inhibi-
tors from high-throughput screening of combinatorial libraries.
J. Med. Chem. 2006, 49, 2388–2397.
(38) Spetzler, J. C.; Westphal, V.; Winther, J. R.; Meldal, M. Prepara-
tion of fluorescence quenched libraries containing interchain dis-
ulphide bonds for studies of protein disulphide isomerases. J. Pept.
Sci. 1998, 4, 128–137.
(20) Darkins, P.; Gilmore, B. F.; Hawthorne, S. J.; Healy, A.; Moncrieff,
H.; McCarthy, N.; McKervey, M. A.; Bromme, D.; Papagano,
M.; Walker, B. Synthesis of peptidyl ene diones: selective inactiva-
tors of the cysteine proteinases. Chem. Biol. Drug Des. 2007, 69,
170–179.
(39) Shin, D.-S.; Kim, Y.-G.; Kim, E.-M.; Kim, M.; Park, H.-Y.; Kim,
J.-H.; Lee, B.-S.; Kim, B.-G.; Lee, Y.-S. Solid-phase peptide library
synthesis on HiCore resin for screening substrate specificity of Brk
protein tyrosine kinase. J. Comb. Chem. 2008, 10, 20–23.
(40) For substrate libraries see: (a) Leon, S.; Quarrell, R.; Lowe, G.
Evaluation of resins for on-bead screening: A study of papain
and chymotrypsin specificity using PEGA-bound combinatorial
peptide libraries. Bioorg. Med. Chem. Lett. 1998, 8, 2997–3002.
(b) St. Hilaire, P. M.; Willert, M.; Juliano, M. A.; Juliano, L.; Meldal,
M. Fluorescence-quenched solid phase combinatorial libraries in the
characterization of cysteine protease substrate specificity. J. Comb.
€
(21) Ekici, O. D.; Gotz, M. G.; James, K. E.; Li, Z. Z.; Rukamp, B. J.;
ꢀꢁ
Asgian, J. L.; Caffrey, C. R.; Hansell, E.; Dvorak, J.; McKerrow,
J. H.; Potempa, J.; Travis, J.; Mikolajczyk, J.; Salvesen, G. S.;
Powers, J. C. Aza-peptide Michael acceptors: a new class of
inhibitors specific for caspases and other clan CD cysteine pro-
teases. J. Med. Chem. 2004, 47, 1889–1892.
(22) Schirmeister, T. Aziridine-2,3-dicarboxylic acid derivatives as
inhibitors of papain. Arch. Pharm. Pharm. Med. Chem. 1996,
329, 229–238.
ꢁ
Chem. 1999, 1, 509–523. (c) Rosse, G.; Kueng, E.; Page, M. G. P.;