Boisvert et al.
1293
3. Y. Aoyagi, R.P. Jain, and R.M. Williams. J. Am. Chem. Soc.
123, 3472 (2001).
hedron Lett. 37, 6787 (1996); (c) D.A. Conlon, D. Kumke, C.
Moeder, M. Hardiman, G. Hutson, and L. Sailer. Adv. Synth.
Catal. 346, 1307 (2004); (d) P.E. Harrington and M.A. Tius. J.
Am. Chem. Soc. 123, 8509 (2001).
4. Recent reviews: (a) R.H. Grubbs (Editor). Handbook of me-
tathesis. Edited by Wiley-VCH, Weinheim, Germany. 2003;
(b) K.C. Nicolaou, P.G. Bulger, and D. Sarlah. Angew. Chem.
Int. Ed. 44, 4490 (2005); (c) R.H. Grubbs. Tetrahedron, 60,
7117 (2004); (d) A.H. Hoveyda, D.G. Gillingham, J.J. Van
Veldhuizen, O. Kataoka, S.B. Garber, J.S. Kingsbury, and
J.P.A. Harrity. Org. Biomol. Chem. 2, 8 (2004).
5. Although we know of no other RCM-cleavable chiral auxil-
iary, the underlying concept is similar to RCM-cleavable link-
ers developed for solid-phase synthesis. For example, see:
(a) M.S.M. Timmer, J.D.C. Codée, H.S. Overkleeft, J.H. van
Boom, and G.A. van der Marel. Synlett, 2155 (2004); (b) J.-D.
Moriggi, L.J. Brown, J.L. Castro, and R.C.D. Brown. Org.
Biomol. Chem. 2, 835 (2004).
11. For the use of CuCN in the SN2′ displacement of allylic esters
with Grignard reagents, see: C.C. Tseng, S.D. Paisley, and
H.L. Goering. J. Org. Chem. 51, 2884 (1986).
12. (a) J. Huang, E.D. Stevens, S.P. Nolan, and J.L. Peterson. J.
Am. Chem. Soc. 121, 2674 (1999); (b) M. Scholl, T.M. Trnka,
J.P. Morgan, and R.H. Grubbs. Tetrahedron Lett. 40, 2247
(1999).
13. For recent discussions, see: (a) C.D. Edlin, J. Faulkner, D.
Fengas, C.K. Knight, J. Parker, I. Preece, P. Quayle, and S.N.
Richards. Synlett, 572 (2005); (b) S.H. Hong, M.W. Day, and
R.H. Grubbs. J. Am. Chem. Soc. 126, 7414 (2004); (c) B.
Schmidt. Eur. J. Org. Chem. 1865 (2004).
6. While RCM reactions on dienes attached to a chiral auxiliary
are numerous, in these systems the auxiliary is cleaved by
transformations different from the RCM reaction. For exam-
ple, see: M.T. Crimmins and B.W. King. J. Org. Chem. 61,
4192 (1996).
7. (a) C. Spino and C. Beaulieu. Angew. Chem. Int. Ed. 39, 1930
(2000); (b) C. Spino, C. Godbout, C. Beaulieu, M. Harter,
T.M. Mwene-Mbeja, and L. Boisvert. J. Am. Chem. Soc. 126,
13312 (2004).
8. C. Spino, M.-C. Granger, and M.-C. Tremblay. Org. Lett. 4,
4735 (2002).
9. E.-I. Negishi and D.Y. Kondalov. Chem. Soc. Rev. 25, 417
(1996).
14. Successful RCM reactions on such sterically demanding sub-
strates are rare in the literature. For RCM on substrates with
the same general features, see: (a) S. Suga, M. Watanabe, and
J.-I. Yoshida. J. Am. Chem. Soc. 124, 14824 (2002); (b) E.
Roulland, C. Monneret, J.-C. Florent, C. Bennejean, P. Renard,
and S. Léonce. J. Org. Chem. 67, 4399 (2002); (c) Y. Chong,
G. Gumina, and C.K. Chu. Tetrahedron: Asymmetry, 11, 4853
(2000). In all cases, the terminal alkyl group (opposite a qua-
ternary center) on the E alkene is much less hindered than in
our case (i.e., menthyl fragment) and the RCM proceeds much
more easily than here, allowing the use of the less active cata-
lyst, Cl2(Cy3P)2Ru=CHPh.
15. For the synthesis of heterocycles by RCM and other methods,
see the thematic issue on heterocycles: Chem. Rev. 104(5),
(2004).
16. D. Gagnon, S. Lauzon, C. Godbout, and C. Spino. Org. Lett. 7,
4769 (2005).
10. The use of carefully dried CeCl3 was beneficial in increasing
both the yields of the propargylic alcohols 4 and the Felkin–
Ahn selectivity. For discussions on the drying of CeCl3 and its
effects, see: (a) N. Takeda and T. Imamoto. Org. Synth. 76,
228 (1999); (b) V. Dimitrov, K. Kostova, and M. Genov. Tetra-
© 2006 NRC Canada