Shu et al.
JOCArticle
SCHEME 1. Selective Functionalization of Tertiary Amine
SCHEME 3. cis-Diacetoxylation of 1-Phenylpiperidine 1a
SCHEME 4. Proposed Mechanism
SCHEME 2. General Strategies for C-O Formation Adjacent
to Nitrogen
co-workers reported the OsO4-catalyzed cis-dihydroxylation
of alkenes and its asymmetric version.9 Because of the high
cost and toxicity of OsO4, various alternative metal catalysts
for alkene cis-dihydroxylations have been developed in the
past years.10 Currently, Celik reported that hypervalent
iodine compound can also mediate this transformation in
the absence of metal.11 However, an efficient method for the
direct dioxygenation of less reactive methylene group is not
disclosed so far. Herein, we report a direct 2,3-diacetoxyla-
tion of R,β-C-H of piperidine derivates promoted by hy-
pervalent iodine(III).
We focused our studies on the acetoxylation of piperidine
derivates using DIB. To a mixture of 1-phenylpiperidine
˚
1a (0.2 mmol) and 5 A molecular sieves (50 mg) in i-PrOH
oxidation, which take advantage of the 1,5-hydrogen atom
transfer, to achieve R-methoxylation of N-heterocycles
(Scheme 2b).5 Murahashi mimicked cytochrome P-450 type
reactivity using Ru(II) and Os(III) catalysts to afford various
R-oxygenated compounds (Scheme 2c).6 Very recently, Yu
and Corey reported a similar pathway, in the presence of
directing groups, to achieve the selective acetoxylation of
R-CH3 and β-CH2, respectively (Scheme 2d).7 Despite these
significant progress on the C-O bond formation via C-H
bond functionalization adjacent to nitrogen atom, direct
functionalization of β-C-H still remains a great challenge.
To the best of our knowledge, there are no generally effective
methods for dioxygenation of the both positions.8
(2 mL), DIB (4 equiv) was added in one portion. After
stirring at room temperature for 6 h, cis-2,3-diacetoxylated
product 2a was isolated in a 42% yield (Scheme 3).12 The
proposed mechanism of the formation of 2a is shown in
Scheme 4. Similar to strategies of the oxidation of tertiary
amines by either electrochemical pathway (Scheme 2a) or
metal-catalyzed pathway (Scheme 2c), intermediate iminium
(10) For Fe-catalyzed dihydroxylations: (a) Fujita, M.; Costas, M.; Que,
L., Jr. J. Am. Chem. Soc. 2003, 125, 9912. (b) Chen, K.; Costas, M.; Kim, J.;
Tipton, A. K.; Que, L., Jr. J. Am. Chem. Soc. 2002, 124, 3026. (c) Chen, K.;
Que, L. Angew. Chem., Int. Ed. 1999, 38, 2227. For Mn-catalyzed dihydroxyla-
tions: (d) Brinksma, J.; Schmieder, L.; Van Vliet, G.; Boaron, R.; Hage, R.; De
Vos, D. E.; Alsters, P. L.; Feringa, B. L. Tetrahedron Lett. 2002, 43, 2619. (e) De
Vos, D. E.; De Wildeman, S.; Sels, B. F.; Grobet, P. J.; Jacobs, P. A. Angew.
Chem., Int. Ed. 1999, 38, 980. For Ru-catalyzed dihydroxylations: (f) Yip, W.-P.;
Yu, W.-Y.; Zhu, N.; Che, C.-M. J. Am. Chem. Soc. 2005, 127, 14239. (g) Ho,
C.-M.; Yu, W.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2004, 43, 3303.
(h) Plietker, B.; Niggemann, M. Org. Lett. 2003, 5, 3353. (i) Shing, T. K. M.;
Tai, V. W. F.; Tam, E. K. W. Angew. Chem., Int. Ed. 1994, 33, 2312. For Pd-
catalyzed dihydroxylations: (j) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc.
2009, 131, 3846. (k) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179.
On the other hand, dioxygenation continues to be a
fascinating and useful area of research since Sharpless and
(5) (a) Sun, P.; Sun, C.; Weinreb, S. M. J. Org. Chem. 2002, 67, 4337.
(b) Han, G.; LaPorte, M.; McIntosh, M. C.; Weinreb, S. M. J. Org. Chem.
1996, 61, 9483.
€
(6) (a) Murahashi, S.-I.; Naota, T.; Miyaguchi, N.; Nakato, T. Tetra-
hedron Lett. 1992, 33, 6991. (b) Murahashi, S.-I.; Saito, T.; Naota, T.;
Kumobakashi, H.; Akutogaua, S. Tetrahedron Lett. 1991, 32, 5991.
(c) Murahashi, S.-I.; Saito, T.; Naota, T.; Kumobayashi, H.; Akutapxwa,
S. Tetrahedron Lett. 1991, 32, 2145. (d) Murahashi, S.-I.; Naota, T.;
Kuwzbara, T.; Saito, T.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem.
Soc. 1990, 1l2, 7820. (e) Murahashi, S.-I.; Naota, T.; Yonemura, K. J. Am.
Chem. Soc. 1988, 110, 8256.
(7) (a) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391.
(b) Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu, J.-Q. Org. Lett. 2006, 8, 3387.
(8) The only example was achieved by electrochemical oxidation, see
ref 3a.
(11) Celik, M.; Alp, C.; Coskun, B.; Gultekina, M. S.; Balci, M. Tetra-
hedron Lett. 2006, 47, 3659.
(12) The cis-geometry was confirmed by the 1H NMR spectrum. The
observed coupling constants, J2,3 = 4.8 Hz for products 2a-2c, 2g, and
J
2,3 = 4.4 Hz for product 2d, are within the coupling constant of the two cis-
hydrogen of cyclohexane [JHH (ax-ex, cis): 0-5 Hz, JHH (ax-ax, trans):
6-14 Hz]. The coupling constants of similar structure, such as (cis and trans)-
2,3-dihydroxypyrans and substituted tetrahydroquinoline, can also be used
for reference. For detail, see: (a) Levecque, P.; Gammon, D.; Kinfe, H. H.;
Jacobs, P.; De Vos, D.; Sels, B. Org. Biomol. Chem. 2007, 5, 1800. (b) Sugai,
T.; lkeda, H.; Ohta, H. Tetrahedron 1996, 52, 8123. (c) Sridharan, V.;
Avendano, C.; Menendez, J. C. Tetrahedron 2007, 63, 673. Furthermore,
hypervalent iodine(III) reagents promoted dioxygenation of alkenes always
afford the cis-products. The mechanism of the formation of the cis-products
have been proposed before. For detail, see (d) Rebrovic, L.; Koser, G. F.
J. Org. Chem. 1984, 49, 2462. Also see ref 11.
~
ꢀ
ꢀ
€
(9) (a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroder, G.;
Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968. (b) Johnson, R. A.;
Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.;
VCH: New York, 2000.
J. Org. Chem. Vol. 74, No. 19, 2009 7465