1988
R. Sanz et al.
LETTER
(2) For recent reviews, see: (a) Cacchi, S.; Fabrizi, G. Chem.
Rev. 2005, 105, 2873. (b) Humphrey, G. R.; Kuethe, J. T.
Chem. Rev. 2006, 106, 2875.
(3) Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.;
Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71,
9088.
3-dienylindoles has been developed through an environ-
mentally friendly process with water as the only side
product of the reaction.
(4) See, for instance: (a) Palmieri, A.; Petrini, M. J. Org. Chem.
2007, 72, 1863. (b) Bhuvaneswari, S.; Jeganmohan, M.;
Cheng, C.-H. Chem. Eur. J. 2007, 13, 8285. (c) Wang,
S.-Y.; Ji, S.-J. Synlett 2007, 2222. (d) Rozenman, M. M.;
Kanan, M. W.; Liu, D. R. J. Am. Chem. Soc. 2007, 129,
14933. (e) Kong, W.; Cui, J.; Yu, Y.; Chen, G.; Fu, C.; Ma,
S. Org. Lett. 2009, 11, 1213.
(5) 1-(3-Indolyl)-buta-1,3-dienes are usually prepared in several
steps and poor overall yields. See, for instance: (a) Sheu,
J.-H.; Chen, Y.-K.; Chung, H.-F.; Lin, S.-F.; Sung, P.-J.
J. Chem. Soc., Perkin Trans. 1 1998, 1959. (b) Wada, A.;
Babu, G.; Shimomoto, S.; Ito, M. Synlett 2001, 1759.
(6) For a review, see: Bandini, M.; Melloni, A.; Tommasi, S.;
Umani-Ronchi, A. Synlett 2005, 1199.
(7) (a) Ru: Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai,
M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846.
(b) Re: Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. Org.
Lett. 2004, 6, 1325. (c) Ru: Zaitsev, A. B.; Gruber, S.;
Pregosin, P. S. Chem. Commun. 2007, 4692. (d) Ir:
Whithney, S.; Grigg, R.; Derrick, A.; Keep, A. Org. Lett.
2007, 9, 3299.
(8) (a) InCl3: Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem.
Int. Ed. 2006, 45, 793. (b) Sc(OTf)3: Yadav, J. S.;
Subba Reddy, B. V.; Raghavendra Rao, K. V.;
General Procedure for the Synthesis of 3-Dienylindole Deriva-
tives 4
Synthesis of 3-[(1Z,3E)-1,3-Diphenylpenta-1,3-dienyl]-2-phe-
nyl-1H-indole (4ab)
To a mixture of alkynol 2b (123 mg, 0.52 mmol) and 2-phenylin-
dole (1a; 97 mg, 0.5 mmol) in analytical grade MeCN (2 mL) PTSA
(4.8 mg, 0.025 mmol) was added. The reaction was stirred at r.t. for
0.5 h (the completion of the reaction was monitored by GC-MS and
TLC). The solvent was removed under reduced pressure, and the
residue was purified by silica gel column chromatography (eluent:
hexane–Et2O, 7:1) to afford 4ab (144 mg, 70%) as a white solid; mp
136–138 °C. 1H NMR (300 MHz, CDCl3): d = 1.53 (d, J = 7.1 Hz,
3 H), 5.41 (qd, J = 7.1, 1.0 Hz, 1 H), 6.64–6.72 (m, 3 H), 6.76–6.82
(m, 2 H), 6.88–6.94 (m, 1 H), 6.99 (d, J = 7.4 Hz, 1 H), 7.03–7.10
(m, 2 H), 7.11 (s, 1 H), 7.22–7.31 (m, 2 H), 7.31–7.37 (m, 4 H),
7.41–7.46 (m, 2 H), 7.60–7.66 (m, 2 H), 7.76 (s, 1 H) ppm. 13C
NMR (75.4 MHz, CDCl3): d = 15.1 (CH3), 110.3 (CH), 113.0 (C),
119.5 (CH), 120.8 (CH), 122.0 (CH), 125.3 (CH), 126.1 (2 ¥ CH),
126.6 (2 ¥ CH), 127.0 (2 ¥ CH), 127.3 (CH), 127.4 (2 ¥ CH),
127.5 (CH), 127.6 (CH), 128.0 (CH), 128.3 (2 ¥ CH), 128.5 (2
¥ CH), 128.9 (C), 132.8 (C), 135.8 (C), 136.4 (C), 137.1 (C), 139.7
(C), 141.7 (C), 142.5 (C) ppm. LRMS (EI): m/z = 411 (25) [M+],
382 (100), 304 (38). HRMS (EI): m/z calcd for C31H25N: 411.1987;
found: 411.1995.
Narayana Kumar, G. G. K. S. Tetrahedron Lett. 2007, 48,
5573. (c) FeCl3: Jana, U.; Maiti, S.; Biswas, S. Tetrahedron
Lett. 2007, 48, 7160. (d) I2: Srihari, P.; Bhunia, D. C.;
Sreedhar, P.; Mandal, S. S.; Shyam Sunder Reddy, J.;
Yadav, J. S. Tetrahedron Lett. 2007, 48, 8120.
General Procedure for the Synthesis of 3-Allenylindole Deriva-
tives 5
Synthesis of 3-(1,3-Diphenyl-4-methylpenta-1,2-dienyl)-2-(4-
methoxy)-phenyl-1H-indole (5ek)
(9) (a) Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311.
(b) Motokura, K.; Nakagiri, N.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. J. Org. Chem. 2007, 72, 6006. (c) Le Bras, J.;
Muzart, J. Tetrahedron 2007, 63, 7942.
To a mixture of alkynol 2k (130 mg, 0.52 mmol) and 2-(4-methox-
yphenyl)indole (1e; 112 mg, 0.5 mmol) in analytical grade MeCN
(2 mL) PTSA (19 mg, 0.1 mmol) was added. The reaction was
stirred at r.t. for 1 h (the completion of the reaction was monitored
by GC-MS and TLC) whereas a solid precipitated, which was fil-
trated to afford 5ek (187 mg, 82%) as a whitish solid; mp 141–143
°C. 1H NMR (300 MHz, CDCl3): d = 0.97 (d, J = 6.5 Hz, 3 H), 1.19
(d, J = 6.5 Hz, 3 H), 2.78–2.92 (m, 1 H), 3.74 (s, 3 H), 6.64 (d,
J = 8.6 Hz, 2 H), 7.03 (t, J = 7.5 Hz, 1 H), 7.08–7.28 (m, 9 H), 7.32–
7.49 (m, 6 H), 8.15 (br s, 1 H) ppm. 13C NMR (75.4 MHz, CDCl3):
d = 22.3 (CH3), 22.5 (CH3), 29.6 (CH), 55.4 (CH3), 105.0 (C), 108.3
(C), 110.8 (CH), 114.2 (2 ¥ CH), 115.4 (C), 120.17 (CH), 120.22
(CH), 122.2 (CH), 125.2 (C), 126.6 (2 ¥ CH), 126.7 (CH), 126.8
(CH), 127.2 (2 ¥ CH), 128.3 (2 ¥ CH), 128.6 (2 ¥ CH), 129.1 (2
¥ CH), 129.9 (C), 135.5 (C), 135.9 (C), 136.6 (C), 137.4 (C), 159.3
(C), 206.4 (C) ppm. LRMS (EI): m/z = 455 (30) [M+], 412 (100),
378 (56), 291 (59), 223 (64), 115 (51), 91 (82), 77 (56). HRMS (EI):
m/z calcd for C33H29N: 455.2249; found: 455.2262.
(10) (a) Sanz, R.; Martínez, A.; Álvarez-Gutiérrez, J. M.;
Rodríguez, F. Eur. J. Org. Chem. 2006, 1383. (b) Sanz, R.;
Martínez, A.; Miguel, D.; Álvarez-Gutiérrez, J. M.;
Rodríguez, F. Adv. Synth. Catal. 2006, 348, 1841. (c) Sanz,
R.; Miguel, D.; Martínez, A.; Álvarez-Gutiérrez, J. M.;
Rodríguez, F. Org. Lett. 2007, 9, 727. (d) Sanz, R.; Miguel,
D.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F.
Org. Lett. 2007, 9, 2027. (e) Sanz, R.; Martínez, A.;
Álvarez-Gutiérrez, J. M.; Rodríguez, F. Synthesis 2007,
3252. (f) Sanz, R.; Martínez, A.; Guilarte, V.; Álvarez-
Gutiérrez, J. M.; Rodríguez, F. Eur. J. Org. Chem. 2007,
4642.
(11) Sanz, R.; Miguel, D.; Álvarez-Gutiérrez, J. M.; Rodríguez,
F. Synlett 2008, 975.
(12) Sanz, R.; Miguel, D.; Rodríguez, F. Angew. Chem. Int. Ed.
2008, 47, 7354.
(13) We have observed that the presence of an alkyl substituent at
the C-2 of the indole nucleus does not give rise to significant
competitive allenylation processes.
(14) The 1Z,3E-isomer was mainly formed. Variable amounts of
the 1Z,3Z-isomer were detected in the crude product. After
column chromatography we usually isolated the major
isomer slightly contaminated with the minor one, probably
due to further isomerization under the purification
conditions. The stereochemistry was assessed by NOESY
experiments on 4cb, and the rest of the compounds were
assigned by inference. Moreover, the structure of 4af was
confirmed by single-crystal X-ray diffraction analysis
Acknowledgment
We gratefully thank Junta de Castilla y León (BU012A06) and Mi-
nisterio de Educación y Ciencia (MEC) and FEDER (CTQ2007-
61436/BQU) for financial support. D.M. and A.M. thank MEC for
a FPU predoctoral fellowship. M.G. thanks MEC for a ‘Young For-
eign Researchers’ contract (SB2006-0215).
References and Notes
(1) Sundberg, R. J. Indoles; Academic Press: San Diego, 1996.
Synlett 2009, No. 12, 1985–1989 © Thieme Stuttgart · New York