€
Gotz et al.
JOCFeatured Article
and light harvesting.5,6 The importance and diversity of these
functions has inspired many synthetically oriented groups to
design artificial tetrapyrrole systems;among them porphyrin
dimers, trimers, and oligomers with covalent linkages between
the monomeric porphyrin subunits1,2;mimicking their natural
counterparts.7-9As a consequence, oligoporphyrins have gained
significant importance as substrates for molecular sensing10 and
molecular recognition,11 as catalysts in asymmetric synthesis,12
for optical13 or medical14 applications, and as building blocks for
the construction of molecular (nano)materials.15
Because of the rapidly increasing importance of these applica-
tions there is an urgent need for efficient, versatile, and straight-
forward procedures for the construction of unsymmetrically
substituted porphyrin arrays with well-defined three-dimen-
sional geometries and tailor-made chemical, physical, and op-
tical properties. However, the synthesis of suitable assemblies of
tetrapyrrole macrocycles is often time-consuming and requires
the sometimes tedious multistep formation of adequately func-
tionalized monomeric porphyrin precursors.1
(5) Battersby, A. R. Nat. Prod. Rep. 2000, 17, 507–526 and references
cited therein.
(6) Tetrapyrroles: Birth, Life and Death (Molecular Biology Intelligence
Unit); Warren, M. J., Smith, A. G., Eds.; Springer Verlag: New York, 2009
and references cited therein.
According to the two types of reactive sites of a porphyrin
(β- and meso-positions), porphyrin-derived multichromo-
phores can be linked via three different types of direct
(7) For artificial tetrapyrrole systems used in reaction catalysis, see: (a)
Collman, J. P.; Wagenknecht, P. S.; Hutchison, J. E. Angew. Chem., Int. Ed.
Engl. 1994, 33, 1537–1554. (b) Ozaki, S. i.; Matsui, T.; Roach, M. P.;
Watanabe, Y. Coord. Chem. Rev. 2000, 198, 39–59. (c) Vincente, M. G. H.;
Smith, K. M. Curr. Org. Chem. 2000, 4, 139–174. (d) Vinhado, F. S.; Martins,
P. R.; Iamamoto, Y. Curr. Top. Catal. 2002, 3, 199–213. (e) Stephenson, N.
A.; Bell, A. T. J. Mol. Catal. A: Chem. 2007, 275, 54–62. (f) Doyle, M. P.
Angew. Chem., Int. Ed. 2009, 48, 850–852.
(8) For some recent examples of molecular binding properties of artificial
porphyrin systems, see: (a) Zheng, J.-Y.; Konishi, K.; Aida, T. Tetrahedron
1997, 53, 9115–9122. (b) Weiss, J. J. Inclusion Phenom. Macrocycl. Chem.
2001, 40, 1–22. (c) Zhou, H.; Groves, J. T. J. Porphyrins Phthalocyanines
2004, 8, 125–140. (d) Mamardashvili, N. Z.; Maltseva, O. V.; Ivanova, Y. B.;
Mamardashvili, G. M. Tetrahedron Lett. 2008, 49, 3752–3756. (e) Chekme-
neva, E.; Hunter, C. A.; Packer, M. J.; Turega, S. M. J. Am. Chem. Soc. 2008,
130, 17718–17725. (f) Yang, J.; Cho, S.; Yoo, H.; Park, J.; Li, W.-S.; Aida, T.;
Kim, D. J. Phys. Chem. A 2008, 112, 6869–6876. (g) Silva, I.; Sansone, S.;
Brancaleon, L. Protein J. 2009, 28, 1–13.
(9) For recent reviews on artificial photosynthetic model systems derived
from porphyrins, see: (a) Wasielewski, M. R. Chem. Rev. 1992, 92, 435–461.
(b) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26, 198–205.
(c) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40–48. (d)
Fukuzumi, S.; Imahori, H. Electron Transfer Chem. 2001, 2, 927–975. (e)
Imahori, H.; Mori, Y.; Matano, Y. J. Photochem. Photobiol., C 2003, 4, 51–
83. (f) Guldi, D. M. Chem. Soc. Rev. 2002, 31, 22–36. (g) Kobuke, Y.; Ogawa,
K. Bull. Chem. Soc. Jpn. 2003, 76, 689–708. (h) Imahori, H. Org. Biomol.
Chem. 2004, 2, 1425–1433. (i) Imahori, H. J. Phys. Chem. B 2004, 108, 6130–
6143. (j) Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006, 79, 177–195. (k) Satake,
A.; Kobuke, Y. Org. Biomol. Chem. 2007, 5, 1679–1691. (l) Hori, T.;
Nakamura, Y.; Aratani, N.; Osuka, A. J. Organomet. Chem. 2007, 692,
148–155. (m) Jiang, L.; Li, Y. J. Porphyrins Phthalocyanines 2007, 11, 299–
312. (n) Nakamura, Y.; Aratani, N.; Osuka, A. Chem. Soc. Rev. 2007, 36,
831–845.
(10) For selected recent examples of applications of porphyrins in mo-
lecular sensing, see: (a) Konishi, K.; Kimata, S.; Yoshida, K.; Tanaka, M.;
Aida, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 2823–2825. (b) Ashkenasy,
G.; Ivanisevic, A.; Cohen, R.; Felder, C. E.; Cahen, D.; Ellis, A. B.; Shanzer,
A. J. Am. Chem. Soc. 2000, 122, 1116–1122 (O2 sensing). (c) Dooling, C. M.;
Worsfold, O.; Richardson, T. H.; Tregonning, R.; Vysotsky, M. O.; Hunter,
C. A.; Kato, K.; Shinbo, K.; Kaneko, F. J. Mater. Chem. 2001, 11, 392–398
(NO2 sensing). (d) Zhang, X.-B.; Guo, C.-C.; Li, Z.-Z.; Shen, G.-L.; Yu, R.-Q.
Anal. Chem. 2002, 74, 821-825 (sensing of mercury ions). (e) Kim, Y.-H.; Hong,
J.-I. Chem. Commun. 2002, 512-513 (sensing of NaCN). (f) Bucher, C.;
Devillers, C. H.; Moutet, J.-C.; Royal, G.; Saint-Aman, E. Chem. Commun. 2003,
888-889 (sensing of neutral molecules). (g) Zhang, Y.; Yang, R.; Liu, F.; Li, K. A.
Anal. Chem. 2004, 76, 7336-7345 (imidazole sensing). (h) Niu, C.-G.; Gui, X.-
Q.; Zeng, G.-M.; Guan, A.-L.; Gao, P.-F.; Qin, P.-Z. Anal. Bioanal. Chem. 2005,
383, 349-357 (pH sensing). (i) Zhang, H.; Sun, Y.; Ye, K.; Zhang, P.; Wang, Y. J.
Mater. Chem. 2005, 15, 3181-3186 (O2 sensing). (j) Kejik, Z.; Zaruba, K.;
Michalik, D.; Sebek, J.; Dian, J.; Pataridis, S.; Volka, K.; Kral, V. Chem.
Commun. 2006, 1533-1535 (sensing of ATP). (k) Gulino, A.; Mineo, P.;
Scamporrino, E.; Vitalini, D.; Fragala, I. Chem. Mater. 2006, 18, 2404-2410
(pH sensing). (l) Xie, Y.; Hill, J. P.; Charvet, R.; Ariga, K. J. Nanosci.
Nanotechnol. 2007, 7, 2969–2993. (m) Shoji, Y.; Tashiro, K.; Aida, T. Chirality
2008, 20, 420–424.
(13) Data storage: (a) Ao, R.; Kummerl, L.; Haarer, D. Adv. Mater. 1995, 7,
495. Nonlinear optics: (b) Nalwa, H. S. Adv. Mater. 1993, 5, 341.Electrochro-
mism: (c) Mortimer, R. J. Chem. Soc. Rev. 1997, 26, 147. Optical limiting:
(d) Perry, J. W.; Mansour, K.; Lee, I.-Y. S.; Wu, X.-L.; Bedworth, P. V.; Chen,
C.-T.; Ng, D.; Marder, S. R.; Miles, P.; Wada, T.; Tian, M.; Sasabe, H. Science
1996, 273, 1533.
(14) Photodynamic therapy (PDT): (a) Moan, J. Photochem. Photobiol.
1986, 43, 681. (b) Dougherty, T. J. Adv. Photochem. 1992, 17, 275–311. (c)
Dougherty, T. J.; Marcus, S. L. Eur. J. Cancer 1992, 28, 1734–1742. (d)
Bonnett, R. Chem. Soc. Rev. 1995, 24, 19–33. (e) Franck, B.; Nonn, A.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1795–1811. (f) Sternberg, E. D.;
Dolphin, D. Tetrahedron 1998, 54, 4151–4202. (g) MacDonald, I. J.; Dougherty,
T. J. J. Porphyrins Phthalocyanines 2001, 5, 105-129. Boron neutron capture
therapy (BNCT): (h) Barth, R. F.; Soloway, A. H.; Brugger, R. M. Cancer Invest.
1996, 14, 534–550. (i) Kahl, S. B.; Li, J. Inorg. Chem. 1996, 35, 3878. (j) Soloway,
A. H.;Tjarks, W.;Barnum, B. A.;Rong, F.-G.;Barth, R.F.; Codogni, I. M.;Wilson, J.
G. Chem. Rev. 1998, 98, 1515-1562. DNA cleavage: (k) An, J. M.; Yang, S. J.; Yi,
S.-Y.; Jhon, G.-J.; Nam, W. Bull. Korean Chem. Soc. 1997, 18, 117. (l) Mehta, G.;
Muthusamy, S.; Maiya, B. G.; Arounaguiri, S. Tetrahedron Lett. 1997, 38, 7125.
(m) Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E. Clin. Cancer Res.
2005, 11, 3987–4002.
(15) For some recent examples, see: (a) Crossley, M. J.; Burn, P. L. J.
Chem. Soc., Chem. Commun. 1991, 1569. (b) Wagner, R. W.; Lindsey, J. S. J.
Am. Chem. Soc. 1994, 116, 9759. (c) Wagner, R. W.; Lindsey, J. S.; Seth, J.;
Palaniappan, V.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 3996. (d) Harth,
E. M.; Hecht, S.; Helms, B.; Malmstrom, E. E.; Frechet, J. M. J.; Hawker, C.
J. J. Am. Chem. Soc. 2002, 124, 3926–3938. (e) Murakami, H.; Nomura, T.;
Nakashima, N. Chem. Phys. Lett. 2003, 378, 481–485. (f) Tsuda, M.; Dy, E.
S.; Kasai, H. Eur. Phys. J. D 2006, 38, 139–141. (g) Elemans, J. A. A. W.; van
Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006, 18, 1251-1266
and references cited therein. (h) Fukuzumi, S.; Kojima, T. J. Mater. Chem. 2008,
18, 1427–1439.
(16) Osuka, A.;Shimidzu, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 135–137.
(17) Yoshida, N.; Osuka, A. Tetrahedron Lett. 2000, 41, 9287–9291.
(18) (a) Susumu, K.; Shimidzu, T.; Tanaka, K.; Segawa, H. Tetrahedron
Lett. 1996, 37, 8399–8402. (b) Senge, M. O.; Feng, X. Tetrahedron Lett. 1999,
40, 4165–4168. (c) Wojaczynski, J.; Latos-Grazynski, L.; Chmielewski, P. J.;
Van Calcar, P.; Balch, A. L. Inorg. Chem. 1999, 38, 3040–3050. (d) Senge, M.
O.; Feng, X. J. Chem. Soc., Perkin Trans. 1 2000, 3615–3621. (e) Miller, M.
A.; Lammi, R. K.; Prathapan, S.; Holten, D.; Lindsey, J. S. J. Org. Chem.
2000, 65, 6634–6649. (f) Hiroto, S.; Osuka, A. J. Org. Chem. 2005, 70, 4054–
4058. (g) Jin, L.-M.; Chen, L.; Yin, J.-J.; Guo, C.-C.; Chen, Q.-Y. Eur. J. Org.
Chem. 2005, 3994–4001. (h) Jin, L.-M.; Yin, J.-J.; Chen, L.; Guo, C.-C.;
Chen, Q.-Y. Synlett 2005, 2893–2898.
(19) Aratani, N.; Osuka, A. Org. Lett. 2001, 3, 4213–4216.
(20) Khoury, R. C.; Jaquinod, L.; Smith, K. M. Chem. Commun. 1997,
1057–1058.
(21) For directly meso,meso-linked dimmers derived from corroloid
systems, see: Sankar, J.; Rath, H.; Prabhuraja, V.; Gokulnath, S.; Chandra-
shekar, T. K.; Purohit, C. S.; Verma, S. Chem.;Eur. J. 2007, 13, 105–114.
€
(22) (a) Bringmann, G.; Gotz, D. C. G.; Gulder, T. A. M.; Gehrke, T. H.;
Bruhn, T.; Kupfer, T.; Radacki, K.; Braunschweig, H.; Heckmann, A.;
Lambert, C. J. Am. Chem. Soc. 2008, 130, 17812–17825. (b) Bringmann,
(11) For reviews on porphyrins used for chiral recognition, see: (a)
Ogoshi, H.; Mizutani, T. Acc. Chem. Res. 1998, 31, 81–89. (b) Huang, X.;
Nakanishi, K.; Berova, N. Chirality 2000, 12, 237–255. (c) Simonneaux, G.;
Le Maux, P. Coord. Chem. Rev. 2002, 228, 43–60.
€
€
G.; Rudenauer, S.; Gotz, D. C. G.; Gulder, T. A. M.; Reichert, M. Org. Lett.
(12) For selected examples of porphyrins used in asymmetric synthesis,
see: (a) Collman, J. P.; Zhang, X.; Lee, V. J.; Uffelman, E. S.; Brauman, J. I.
Science 1993, 261, 1404–1411. (b) Gross, Z.; Ini, S. J. Org. Chem. 1997, 62,
5514–5521. (c) Rose, E.; Quelquejeu, M.; Pandian, R. P.; Lecas-Nawrocka,
A.; Vilar, A.; Ricart, G.; Collman, J. P.; Wang, Z.; Straumanis, A. Poly-
hedron 2000, 19, 581–586. (d) Zhang, J.-L.; Zhou, H.-B.; Huang, J.-S.; Che,
C.-M. Chem.;Eur. J. 2002, 8, 1554–1562. (e) Ferrand, Y.; Le Maux, P.;
Simonneaux, G. Org. Lett. 2004, 6, 3211–3214. (f) Zhang, R.; Yu, W.-Y.;
Che, C.-M. Tetrahedron: Asymmetry 2005, 16, 3520–3526.
2006, 8, 4743–4746.
(23) For β,β0-bisporphyrins without meso-substituents that might be
axially chiral but have not been stereochemically characterized, see refs 24
and 25.
(24) Deng, Y.; Chang, C. K.; Nocera, D. G. Angew. Chem., Int. Ed. 2000,
39, 1066–1068.
(25) (a) Paine, J. B. III; Dolphin, D. Can. J. Chem. 1978, 56, 1710–1712.
(b) Uno, H.; Kitawaki, Y.; Ono, N. Chem. Commun. 2002, 116–117.
8006 J. Org. Chem. Vol. 74, No. 21, 2009