synthesis where readily available alkenylzinc reagents and
a wide variety of alkyl halides, including chlorides, are cross-
coupled by an iron catalyst in the presence of excess
TMEDA.
Table 1. Cross-Coupling of Styryl Metals (RM) with
Bromocycloheptane (2) in the Presence of Iron Salt and
Additive
Figure 1. Alkenyl metal reagents examined for the iron-catalyzed
cross-coupling with alkyl halides.
We conducted the reaction of a secondary alkyl bromide
with alkenylzinc reagents (1a and 1b) for screening of iron
precatalyst and additives (Table 1).13,14 The reaction between
1a and 2 proceeded very sluggishly in the presence of 5 mol
% of FeCl3 to give the desired coupling product 3 in 8%
yield with recovery of 70% of the bromide 2 (entry 1).
ꢀ-Styryl[(trimethylsilyl)methyl]zinc reagent 1b, prepared
a Reactions were carried out on a 0.5 mmol scale. b Prepared from
ꢀ-bromostyrene (E/Z ) 86/14). c Yields were determined by GLC analysis
using undecane as an internal standard. d Recovery of starting bromide.
e E/Z ) 80/20 f 1c was added dropwise over 0.5 h at 0 °C.
from 1a and (trimethylsilyl)methylmagnesium chloride13a, 15
e,
showed slightly higher reactivity, albeit lower selectivity, to
give 3 in 25% yield along with byproducts (4 in 4% and 5
in 17% yield) (entry 2). In these cases, formation of diene 6
was observed in the initial period of the reaction.16 Note
that high molecular-weight byproducts, derived from bro-
mocycloheptane 2 and the diene 6, formed in moderate
yields.17
(9) Selected papers: (a) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc.
1971, 93, 1487–1489. (b) Molander, G. A.; Rahn, B. J.; Shubert, D. C.;
Bonde, S. E. Tetrahedron Lett. 1983, 24, 5449–5452. (c) Cahiez, G.;
Avedissian, H. Synthesis 1998, 1199–1205. (d) Dohle, W.; Kopp, F.; Cahiez,
G.; Knochel, P. Synlett 2001, 1901–1904. (e) Fu¨rstner, A.; Leitner, A.;
Me´ndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856–13863. (f)
Sapountzis, I.; Lin, W.; Kofink, C. C.; Despotopoulou, C.; Knochel, P.
Angew. Chem. 2005, 117, 1682-1685; Angew. Chem., Int. Ed. 2005, 44,
1654-1658. (g) Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem. 2007, 119,
952-954; Angew. Chem., Int. Ed. 2007, 46, 934-936. (h) Dongol, K. G.;
Koh, H.; Sau, M.; Chai, C. L. L. AdV. Synth. Catal. 2007, 349, 1015–1018.
(i) Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. 2007, 129, 9844–
9845. (j) Fu¨rstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.;
Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773–8787. (k) Hatakeyama,
T.; Yoshimoto, Y.; Gabriel, T.; Nakamura, M. Org. Lett. 2008, 10, 5541–
5544. (l) Hatakeyama, T.; Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am.
Chem. Soc. 2009, 131, 11949–11963.
During the screening of additives, we found that the
amount of TMEDA was critical in achieving a selective
coupling reaction: the reaction with 3.5 equiv of TMEDA
gave 3 in 95% yield, while the reaction with 1.5 and 3.0
equiv of TMEDA gave 3 in 56% and 91% yield, respectively
(entries 3-5).18 Because TMEDA can coordinate not only
to the iron atom but also to the zinc and magnesium atoms,
it would be necessary to use a stoichiometric or slight excess
amount of TMEDA relative to the total amount of metal salts
to ensure that TMEDA coordinates the iron catalyst. The
divalent iron precursor, FeCl2, as well as Fe(acac)3 was
comparable to FeCl3 (entries 6 and 7). Note that the reaction
with alkenylmagnesium reagent 1c in the presence of 3.5
equiv of TMEDA was far less selective (entry 8). The
conditions reported for alkenylmagnesium reagents11,12 were
not effective for the reaction between 1c and 2 (see the
Supporting Information).
(10) Iron-catalyzed cross-coupling of alkyl electrophile: (a) Nakamura,
M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686–
3687. (b) Nagano, T.; Hayashi, T. Org. Lett. 2004, 6, 1297–1299. (c) Martin,
R.; Fu¨rstner, A. Angew. Chem. 2004, 116, 4045-4047; Angew. Chem., Int.
Ed. 2004, 43, 3955-3957. (d) Bedford, R. B.; Bruce, D. W.; Frost, R. M.;
Hird, M. Chem. Commun. 2005, 4161–4163. (e) Bica, K.; Gaertner, P. Org.
Lett. 2006, 8, 733–735. (f) Bedford, R. B.; Betham, M.; Bruce, D. W.;
Danopoulos, A. A.; Frost, R. M.; Hird, M. J. Org. Chem. 2006, 71, 1104–
1110. (g) Cahiez, G.; Habiak, V.; Duplais, C.; Moyeux, A. Angew. Chem.
2007, 119, 4442-4444; Angew. Chem., Int. Ed. 2007, 46, 4364-4366. (h)
Volla, C.-M. R.; Vogel, P. Angew. Chem. 2008, 120, 1325-1327; Angew.
Chem., Int. Ed. 2008, 47, 1305-1307. (i) Noda, D.; Sunada, Y.; Hatakeya-
ma, T.; Nakamura, M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078–
6079.
(11) Gue´rinot, A.; Reymond, S.; Cossy, J. Angew. Chem. 2007, 119,
6641-6644; Angew. Chem., Int. Ed. 2007, 46, 6521-6524.
(12) Cahiez, G.; Habiak, V.; Duplais, C.; Moyeux, A. Org. Lett. 2007,
9, 3253–3254.
Table 2 illustrates the scope of the coupling reaction
between various alkyl halides and alkenylzinc reagents
(13) Iron-catalyzed Negishi coupling reaction : (a) Nakamura, M.; Ito,
S.; Matsuo, K.; Nakamura, E. Synlett 2005, 1794–1798. (b) Bedford, R. B.;
Huwe, M.; Wilkinson, M. C. Chem. Commun. 2009, 600–602. (c)
Hatakeyama, T.; Kondo, Y.; Fujiwara, Y.; Takaya, H.; Ito, S.; Nakamura,
E.; Nakamura, M. Chem. Commun. 2009, 1216–1218. (d) Cahiez, G.;
Foulgoc, L.; Moyeux, A. Angew. Chem. 2009, 121, 3013-3016; Angew.
Chem., Int. Ed. 2009, 48, 2969-2972. (e) Ito, S.; Fujiwara, Y.; Nakamura,
(15) (a) Bertz, S. H.; Eriksson, M.; Miao, G.; Snyder, J. P. J. Am. Chem.
Soc. 1996, 118, 10906–10907. (b) Berger, S.; Langer, F.; Lutz, C.; Knochel,
P.; Mobley, T. A.; Reddy, C. K. Angew. Chem. 1997, 109, 1603-1605;
Angew. Chem., Int. Ed. 1997, 36, 1496-1498.
(16) Iron(III) would be reduced to catalytically active low-valent,
possibly (0) or (II), iron species. See ref 9j and others cited therein.
(17) Iron(0) species catalyzed dimerization and oligomerization of dienes:
Dieck, H. t.; Dietrich, J. Angew. Chem. 1985, 97, 795-796; Angew. Chem.,
Int. Ed. 1985, 24, 781-783.
(18) Conventional additives, NMP (refs 9e and 10h), SIPr (ref 9i,l), and
DPPBz (ref 13b,c) are not as effective as TMEDA.
E.; Nakamura, M. Org. Lett. 2009, 11, 4306–4309, See also ref 9e
.
(14) We used anhydrous FeCl3 (> 99.99%, Aldrich, Inc.) as a precatalyst,
which has been reported rather free from the contamination of a trace amount
of copper; see: Buchwald, S. L.; Bolm, C. Angew. Chem. 2009, 121,
5694-5695; Angew. Chem., Int. Ed. 2009, 48, 5586-5587.
Org. Lett., Vol. 11, No. 20, 2009
4497