Chem., 2009, 74, 9214; (f) E. O. Sarah, C. A. Rose, S. Gundala, K.
Zeitler and S. J Connon, J. Org. Chem., 2011, 76, 347.
3 For some examples of the Stetter reaction, see: (a) M. S. Kerr, J. Read
de Alaniz and T. Rovis, J. Am. Chem. Soc., 2002, 124, 10298; (b) M. S.
Kerr and T Rovis, J. Am. Chem. Soc., 2004, 126, 8876; (c) Q. Liu and
T. Rovis, J. Am. Chem. Soc., 2006, 128, 2552; (d) A. E. Mattson, A. R.
Bharadwaj and K. A. Scheidt, J. Am. Chem. Soc., 2004, 126, 2314; (e) S.
M. Mennen, J. D. Gipson, Y. R. Kim and S. J. Miller, J. Am. Chem.
Soc., 2005, 127, 1654; (f) A. E. Mattson, A. M. Zuhl, T. E. Reynolds
and K. A. Scheidt, J. Am. Chem. Soc., 2006, 128, 4932; (g) Q. Liu and T.
Rovis, Org. Lett., 2009, 11, 2856; (h) E. Sa´nchez-Larios and M. Gravel,
J. Org. Chem., 2009, 74, 7536; (i) B. C. Hong, N. S. Dange, C. S. Hsu
and J. H. Liao, Org. Lett., 2010, 12, 4812; (j) F. G. Sun, X. L. Huang
and S. Ye, J. Org. Chem., 2010, 75, 273; (k) K.-J. Wu, G.-Q. Li, Y. Li,
L.-X. Dai and S.-L. You, Chem. Commun., 2011, 47, 493; (l) G.-F. Sun
and Y. Song, Org. Biomol. Chem., 2011, 9, 3632.
4 For some examples of the intra/intermolecular redox reaction see:
(a) A. Chan and K. A. Scheidt, Org. Lett., 2005, 7, 905; (b) K. Zeitler,
Org. Lett., 2006, 8, 637; (c) B. E. Maki and K. A. Scheidt, Org. Lett.,
2008, 10, 4331; (d) D. Du and Z. Wang, Eur. J. Org. Chem., 2008, 4949;
(e) L. Wang, K. Thai and M. Gravel, Org. Lett., 2009, 11, 891; (f) G.-Q.
Li, L.-X. Dai and S.-L. You, Org. Lett., 2009, 11, 1623; (g) K. Thai,
L. Wang, T. Dudding, F. Bilodeau and M. Gravel, Org. Lett., 2010, 12,
5708; (h) E. M. Phillips, M. Wadamoto, H. S. Roth, A. W. Ott and K.
A. Scheidt, Org. Lett., 2009, 11, 105; (i) Y. Yamaki, A. Shigenaga, K.
Tomita, T. Narumi, N. Fujii and A. Otaka, J. Org. Chem., 2009, 74,
3272; (j) H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2010, 132, 2860;
(k) L. Li, D. Du, J. Ren and Z. Wang, Eur. J. Org. Chem., 2011, 614.
5 (a) S. S. Sohn, E. L. Rosen and J. W. Bode, J. Am. Chem. Soc., 2004,
126, 14370; (b) C. Burstein and F. Glorius, Angew. Chem., Int. Ed.,
2004, 43, 6205; (c) M. He and J. W. Bode, Org. Lett., 2005, 7, 3131;
(d) V. Nair, S. Vellalath, M. Poonoth and E. Suresh, J. Am. Chem. Soc.,
2006, 128, 8736; (e) P. C. Chiang, J. Kaeobamrung and J. W. Bode, J.
Am. Chem. Soc., 2007, 129, 3520; (f) A. Chan and K. A. Scheidt, J.
Am. Chem. Soc., 2007, 129, 5334; (g) M. Wadamoto, E. M. Phillips, T.
E. Reynolds and K. A. Scheidt, J. Am. Chem. Soc., 2007, 129, 10098;
(h) E. M. Phillips, T. E. Reynolds and K. A. Scheidt, J. Am. Chem.
Soc., 2008, 130, 2416; (i) A. Chan and K. A. Scheidt, J. Am. Chem.
Soc., 2008, 130, 2740; (j) Y. Li, Z. A. Zhao, H. He and S. L. You, Adv.
Synth. Catal., 2008, 350, 1885; (k) Y. Matsuoka, Y Ishida, D. Sasaki
and K. Saigo, Chem.–Eur. J., 2008, 14, 9215; (l) L. Yang, B. Tan, F.
Wang and G. Zhong, J. Org. Chem., 2009, 74, 1744; (m) V. Nair,B. P.
Babu, S. Vellalath, V Varghese, A. E. Raveendran and E. Suresh, Org.
Lett., 2009, 11, 2507; (n) S. J. Ryan, L. Candish and D. W. Lupton,
J. Am. Chem. Soc., 2009, 131, 14176; (o) S. D. Sarkar and A. Studer,
Angew. Chem., Int. Ed., 2010, 49, 9266.
Scheme 3 Proposed mechanism of the reaction.
epoxide-opening step, a Z-carboxylate is formed probably due
to the electronic interaction. Finally an intramolecular attack
of the alkoxide moiety provides the product 3 while the NHC
catalyst releases back to the catalytic cycle. Then the product 3
subsequently isomerizes to the thermodynamically more stable
product 2 under the alkaline conditions.
In summary, we have developed a highly efficient N-heterocyclic
carbene catalyzed cascade epoxide-opening and lactonization
reaction, which is a more direct and efficient way to construct
the skeleton of dihydropyrones. A variety of readily accessible
substrates underwent the reaction in good to excellent yield. We
postulated a mechanism for this reaction forming dihydropyrones,
which proceeds via the NHC-catalyzed tandem epoxide-opening
and lactonization reaction. Further investigations into the precise
mechanism of this reaction as well as the use of chiral carbenes
as organocatalysts in other asymmetric reaction are currently
underway in our laboratory.
6 (a) K. Y. K. Chow and J. W. Bode, J. Am. Chem. Soc., 2004, 126, 8126;
(b) N. T. Reynolds, J. Read-de. Alaniz and T. Rovis, J. Am. Chem. Soc.,
2004, 126, 9518; (c) N. T. Reynolds and T. Rovis, J. Am. Chem. Soc.,
2005, 127, 16406; (d) S. S. Sohn and J. W. Bode, Angew. Chem., Int.
Ed., 2006, 45, 6021; (e) M. He, G. J. Uc and J. W. Bode, J. Am. Chem.
Soc., 2006, 128, 15088; (f) J. W. Bode and S. S. Sohn, J. Am. Chem. Soc.,
2007, 129, 13798; (g) H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2007,
129, 13796; (h) H. U. Vora, J. R. Moncecchi,O. Epstein and T. Rovis, J.
Org. Chem., 2008, 73, 9727; (i) H. U. Vora and T. Rovis, J. Am. Chem.
Soc., 2010, 132, 2860.
We are grateful for the generous financial support by the MOST
(2010CB833200), the NSFC (20872054, 20732002, 21072086) and
program 111.
7 (a) T. Hattori, Y. Suzuki, Y. Ito, D. Hotta and S. Miyano, Tetrahedron,
2002, 58, 5215; (b) P. V. Ramachandran, B. Prabhudas, J. S. Chandra
and M. V. R. Reddy, J. Org. Chem., 2004, 69, 6294; (c) B. Tejeda-B, G.
Bluet, G. Broustal and J-M. Compagne, Chem.–Eur. J., 2006, 12, 8358;
(d) D. Zhao, K. Oisaki, M. Kanai and M. Shibasaki, J. Am. Chem.
Soc., 2006, 128, 14440; (e) J. Zhang, Y. Li, W. Wang, X. She and X.
Pan, J. Org. Chem., 2006, 71, 2918; (f) Y. Su, Y. Xu, J. Han, J. Zhang, J.
Qi, T. Jiang, X. Pan and X. She, J. Org. Chem., 2009, 74, 2743.
8 (a) R. Lebeuf, K. Hirano and F. Glorius, Org. Lett., 2008, 10, 4243;
(b) K. Hirano, A. T. Biju, I. Piel and F. Glorius, J. Am. Chem. Soc.,
2009, 131, 14190; (c) A. T. Biju, N. E. Wurz and F. Glorius, J. Am.
Chem. Soc., 2010, 132, 5970.
9 (a) M. Tsubuki, K. Kanai, H. Nagase and T. Honda, Tetrahedron, 1999,
55, 2493; (b) H. Menz and S. F. Kirsch, Org. Lett., 2009, 11, 5634; (c) F.
Cros, B. Pelotier and O. Piva, Eur. J. Org. Chem., 2010, 5063.
10 R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719.
11 D. Seebach, Angew. Chem., Int. Ed. Engl., 1979, 18, 239.
Notes and references
1 For reviews on NHC-organocatalyts see: (a) D. Enders and T.
Balensiefer, Acc. Chem. Res., 2004, 37, 534; (b) J. S. Johnson, Angew.
Chem., Int. Ed., 2004, 43, 1326; (c) V. Nair, S. Bindu and V. Sreekumar,
Angew. Chem., Int. Ed., 2004, 43, 5130; (d) M. Christmann, Angew.
Chem., Int. Ed., 2005, 44, 2632; (e) K. Zeitler, Angew. Chem., Int.
Ed., 2005, 44, 7506; (f) N. Marion, S. D´ıez-Gonza´lez and S. P. Nolan,
Angew. Chem., Int. Ed., 2007, 46, 2988; (g) D. Enders, O. Niemeier and
A. Henseler, Chem. Rev., 2007, 107, 5606; (h) V. Nair, S. Vellalath and
B. P. Babu, Chem. Soc. Rev., 2008, 37, 2691.
2 For some examples of benzoin condensations, see: (a) J. C. Sheehan and
T. Hara, J. Org. Chem., 1974, 39, 1196; (b) D. Enders and U. Kallfass,
Angew. Chem., Int. Ed., 2002, 41, 1743; (c) Y. Hachisu, J. W. Bode
and K. Suzuki, J. Am. Chem. Soc., 2003, 125, 8432; (d) D. Enders, O.
Niemeier and T Balensiefer, Angew. Chem., Int. Ed., 2006, 45, 1463;
(e) L. Baragwanath, C. A. Rose, K. Zeitler and S. J. Connon, J. Org.
5950 | Org. Biomol. Chem., 2011, 9, 5948–5950
This journal is
The Royal Society of Chemistry 2011
©