anti-Selective Catalytic Asymmetric Nitroaldol Reaction
A R T I C L E S
tion, however, has remained a formidable task, likely because
a simple chelation model prefers syn-diastereoselectivity. A
highly anti-selective catalytic asymmetric nitroaldol reaction
utilizing a chiral P-spiro triaminoiminophosphorane as an
effective organocatalyst was recently reported by Ooi et al.,
although low temperature (-78 °C) was required.9 In our
continuing studies on the catalytic asymmetric nitroaldol reac-
tion, we investigated a bimetallic strategy to achieve high anti-
diastereoselectivity.10 We reported that a Nd/Na/amide-based
ligand heterobimetallic catalytic system promoted an anti-
selective catalytic asymmetric nitroaldol reaction of
nitroethane,10a where the presence of the two distinct metal
cations was key for anti-diastereoselectivity. Herein, we describe
a significant advance of the Nd/Na heterobimetallic catalytic
system for a scalable and efficient anti-selective nitroaldol
reaction. Systematic design of the amide-based ligand and
careful observation of the catalyst preparation procedure led us
to identify a highly diastereo- and enantioselective heteroge-
neous Nd/Na heterobimetallic catalyst, which was characterized
by inductively coupled plasma (ICP), X-ray fluorescence (XRF),
and ESI TOF MS analyses. The broad substrate generality and
operational simplicity of the present heterogeneous anti-selective
nitroaldol protocol are particularly valuable for the synthesis
of enantioenriched 1,2-amino alcohols, which constitute a
versatile substructure in medicinal chemistry.
Figure 1. Diastereoselectivity in nitroaldol reactions. (a) Preferential
formation of anti-diastereomer in the reaction using silyl nitronates. (b)
Preferential formation of syn-diastereomer in the presence of monometallic
catalyst. (c) Preferential formation of anti-diastereomer by heterobimetallic
catalyst.
nitronates and aldehydes by Seebach et al.11 An antiparallel
orientation of a silyl nitronate and an aldehyde was proposed
to explain the observed anti-diastereoselectivity (Figure 1a). This
strategy for anti-diastereoselectivity was valid in a catalytic
enantioselective nitroaldol reaction using silyl nitronates as
reported by Jørgensen et al.12 and Maruoka et al.,13 affording
the anti-1,2-nitro alkanols in a highly enantioselective manner.
The use of silyl nitronates, however, requires an extra process
for their preparation and produces unwanted silicon-derived
wastes, severely limiting the utility of the nitroaldol reaction
as an atom-economical, waste-free, and environmentally benign
protocol. We envisioned attaining the antiparallel transition state
with an in situ generated metal nitronate, thereby allowing the
anti-selective catalytic asymmetric nitroaldol reaction to occur
for a simple set of substrates (nitroalkanes and aldehydes) under
waste-free proton-transfer conditions.14 In contrast to the
reaction with silyl nitronates, a nitroaldol reaction using a metal-
based catalyst predominantly affords the syn product, likely
because a cyclic transition state in which both the nitronate and
the aldehyde coordinate to one metal cation M is involved
(Figure 1b). We hypothesized that a heterobimetallic complex
comprising a ligand with an appropriate spatial arrangement for
metal coordination sites would provide a suitable chiral platform
for the antiparallel transition state. In this catalyst design, each
distinct metal cation, M1 and M2, works independently as a
Lewis acid to activate an aldehyde and a Brønsted base (metal
phenoxide) to form metal nitronates; therefore, the reaction
Results and Discussion
Catalyst Design. High anti-diastereoselectivity was reported
in an elegant study of the racemic nitroaldol reaction using silyl
(6) For selected examples for catalytic asymmetric nitroaldol reaction using
ketones and nitromethane, see: (a) Christensen, C.; Juhl, K.; Jørgensen,
K. A. Chem. Commun. 2001, 2222. (b) Misumi, Y.; Bulman, R. A.;
Matsumoto, K. Heterocycles 2002, 56, 599. (c) Du, D. M.; Lu, S. F.;
Fang, T.; Xu, J. X. J. Org. Chem. 2005, 70, 3712. (d) Choudary, B. M.;
Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am.
Chem. Soc. 2005, 127, 13167. (e) Li, H.; Wang, B.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 732. (f) Tosaki, S.-y.; Hara, K.; Gnanadesikan,
V.; Morimoto, H.; Harada, S.; Sugita, M.; Yamagiwa, N.; Matsunaga,
S.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 11776. (g) Tur, F.;
Saa´, J. M. Org. Lett. 2007, 9, 5079. (h) Takada, K.; Takemura, N.;
Cho, K.; Sohtome, Y.; Nagasawa, K. Tetrahedron Lett. 2008, 49, 1623.
(i) Blay, G.; Herna´ndez-Olmos, V.; Pedro, J. R. Org. Biomol. Chem.
2008, 6, 468. (j) Chen, X.; Wang, J.; Zhu, Y.; Shang, D.; Gao, B.;
Liu, X.; Feng, X.; Su, Z.; Hu, C. Chem.-Eur. J. 2008, 14, 10896. (k)
Hara, K; Tosaki, S.-y.; Gnanadesikan, V.; Morimoto, H.; Harada, S.;
Sugita, M.; Yamagiwa, N.; Matsunaga, S.; Shibaski, M. Tetrahedron
2009, 65, 5030.
(7) Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.; Itoh, N.; Shibasaki,
M. J. Org. Chem. 1995, 60, 7388.
(8) (a) Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. Eur. J. Org. Chem.
2006, 2894. (b) Arai, T.; Watanabe, M.; Yanagisawa, A. Org. Lett.
2007, 9, 3595. (c) Sohtome, Y.; Takemura, N.; Takada, K.; Takagi,
R.; Iguchi, T.; Nagasawa, K. Chem. Asian J. 2007, 2, 1150. (d) Arai,
T.; Takashita, R.; Endo, Y.; Watanabe, M.; Yanagisawa, A. J. Org.
Chem. 2008, 73, 4903. For a partially successful example of syn-
selective catalytic asymmetric nitroaldol reaction, see: (e) Yoshimoto,
J.; Sandoval, C. A.; Saito, S. Chem. Lett. 2008, 37, 1294. See also ref
10c.
(10) (a) Nitabaru, T.; Kumagai, N.; Shibasaki, M. Tetrahedron Lett. 2008,
49, 272. (b) Handa, S.; Nagawa, K.; Sohtome, Y.; Matsunaga, S.;
Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47, 3230. (c) Sohtome,
Y.; Kato, Y.; Handa, S.; Aoyama, N.; Nagawa, K.; Matsunaga, S.;
Shibasaki, M. Org. Lett. 2008, 10, 2231.
(11) (a) Colvin, E. W.; Seebach, D. J. Chem. Soc., Chem. Commun. 1978,
689. (b) Seebach, D.; Beck, A. K.; Lehr, F.; Weller, T.; Colvin, E.
Angew, Chem., Int. Ed. Engl. 1981, 20, 397. (c) Seebach, D.; Beck,
A. K.; Mukhopadhyay, T.; Thomas, E. HelV. Chim. Acta 1982, 65,
1101.
(9) Uraguchi, D.; Sakaki, S.; Ooi, T. J. Am. Chem. Soc. 2007, 129, 12392.
For partially successful anti-selective catalytic asymmetric nitroaldol
reactions, see refs 5o,p. For anti-selective nitroaldol reaction of
benzaldehyde catalyzed by hydroxynitrile lyase, see: (a) Purkarthofer,
T.; Gruber, K.; Gruber-Khadjawi, M.; Waich, K.; Skranc, W.; Mink,
D.; Griengl, H. Angew. Chem., Int. Ed. 2006, 45, 3454. (b) Gruber-
Khadjawi, M.; Purkarthofer, T.; Skranc, W.; Griengl, H. AdV. Synth.
Catal. 2007, 349, 1445.
(12) Risgaard, T.; Gothelf, K. V.; Jørgensen, K. A. Org. Biomol. Chem.
2003, 1, 153.
(13) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 2054.
(14) For a theoretical study on the diastereoselectivity in nitroaldol reaction,
see: Lecea, B.; Arrieta, A.; Morao, I.; Coss´ıo, F. P. Chem.-Eur. J.
1997, 3, 20.
9
J. AM. CHEM. SOC. VOL. 131, NO. 38, 2009 13861