Table 3 Cascade Michael–Michael–Aldol condensationa
Yield
(%)c
Yield
(%)c
R
drb
R
drb
CH3 3.7 : 1 7a: 90
C2H5 3.2 : 1 7b: 81
C6H5 8.2 : 1 7c: 82
CH3 6.0 : 1 7d: 88
C2H5 6.4 : 1 7e: 88
C6H5 14 : 1 7f: 82
Scheme 3 Synthesis of complex N-heterocycles from the nitro-
substituted 1,7-diesters and cyclohexanes.
We greatly appreciate the C. Eugene Bennett Department of
Chemistry, the Eberly College of Arts and Science, WVU
research co-op and WV-Nano Initiative at West Virginia
University for financial support.
CH3 4.5 : 1 7g: 80
C2H5 5.1 : 1 7h: 72
C6H5 12 : 1 7i: 77
CH3 3.6 : 1 7j: 84
NO2 3.8 : 1 7k: 87
Cl
4.1 : 1 7l: 83
Notes and references
1 For reviews: (a) K. C. Nicolaou, D. J. Edmonds and P. G. Bulger,
Angew. Chem., Int. Ed., 2006, 45, 7134–7186; (b) D. Enders,
C. Grondal and M. R. M. Huttl, Angew. Chem., Int. Ed., 2007,
46, 1570–1581; (c) S. K. Bur and A. Padwa, Adv. Heterocycl.
Chem., 2007, 94, 1–105.
7m: 76%,
dr = 5.0 : 1
7n: 82%, 7o: 76%,
dr = 4.2 : 1 dr = 3.0 : 1
3a: 86%
2 For examples: (a) H. Xie, L. Zu, H. Li, J. Wang and W. Wang,
J. Am. Chem. Soc., 2007, 129, 10886–10894; (b) Y. S. Tran and
O. Kwon, J. Am. Chem. Soc., 2007, 129, 12632–12633;
(c) T. Tozawa, H. Fujisawa and T. Mukaiyama, Chem. Lett.,
2004, 33, 1454–1455; (d) C. Chapuis, G. Buchi and H. Wuest, Helv.
Chim. Acta, 2005, 88, 3069–3088.
a
1 : 2 = 1 : 4, c = 0.2 M, reaction generally finished in 10–20 h.
dr determined by crude 1H NMR analysis. c Isolated yields of all isomers.
b
with excellent yield and good diastereoselectivity. The
substrate scope is summarized in Table 3.
3 See a review: R. Ballini, G. Bosica, D. Fiorini, A. Palmieri and
M. Petrini, Chem. Rev., 2005, 105, 933–971.
As shown in Table 3, proline could successfully promote the
cascade Michael–Michael–Aldol reaction with the addition of
mild bases (Et3N or NaN3). Application of an a,b-unsaturated
ester gave a good yield of Michael–Michael addition product
3a without further Dieckmann condensation.11 The enantio-
selective intramolecular aldol condensation of 1,7-dialdehyde
has been reported with excellent ee using a proline catalyst.12
However, this cascade transformation gave a very low enantio-
selectivity (o20% ee).13 This could be caused by the lack of
formation of an H-bond between the proline carboxylate
group and carbonyl oxygen under basic conditions. Investiga-
tion of different proline derivatives with possible formation of
a stronger H-bond is currently undergoing in our group. As
functional group-enriched compounds, both 3 and 7 can be
readily converted into complex N-heterocycles through simple
transformations. Two effective derivatizations are summarized
in Scheme 3, which further emphasize the strength of the
reported method as a highly efficient new approach in complex
molecule construction.
4 N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH,
Weinheim, Germany, 2005.
5 For reviews: (a) O. M. Berner, L. Tedeschi and D. Enders, Eur. J.
Org. Chem., 2002, 1877–1894; (b) S. E. Denmark and
A. Thorarensen, Chem. Rev., 1996, 96, 137–165.
6 M. Dadwal, R. Mohan, D. Panda, S. M. Mobinc and I. N. N.
Namboothiri, Chem. Commun., 2006, 338–340.
7 (a) X. Sun, S. Sengupta, J. L. Petersen, H. Wang, J. P. Lewis and
X. Shi, Org. Lett., 2007, 9, 4495–4498; (b) C. Zhong, Y. Chen,
J. L. Petersen, N. G. Akhmedov and X. Shi, Angew. Chem., Int.
Ed., 2009, 48, 1279–1282.
8 For examples: (a) N. Halland, P. S. Aburel and K. A. Jørgensen,
Angew. Chem., Int. Ed., 2004, 43, 1272–1277; (b) E. Gomez-
Bengoa, J. M. Cuerva, C. Mateo and A. M. Echavarren, J. Am.
Chem. Soc., 1996, 118, 8553–8565; (c) A. G. Campana, N. Fuentes,
E. Gomez-Bengoa, C. Mateo, J. Enrique Oltra, A. M. Echavarren
and J. M. Cuerva, J. Org. Chem., 2007, 72, 8127–8130;
(d) M. V. Berrocal, M. V. Gil, E. Roman, J. A. Serrano,
M. B. Hursthouse and M. E. Light, Tetrahedron Lett., 2005, 46,
3673–3676; (e) O. Correc, K. Guillou, J. Hamelin, L. Paquin,
F. Texier-Boullet and L. Toupet, Tetrahedron Lett., 2004, 45,
391–395.
9 Y. Hayashi, H. Sekizawa, J. Yamaguchi and H. Gotoh, J. Org.
Chem., 2007, 72, 6493–6499.
10 See detailed X-ray crystal structures and NOE experiments in the
In conclusion, a one-pot condensation of nitroalkenes and
carbonyl-activated alkenes was developed. The optimal
conditions were developed with the application of both Lewis
base and mild bases. Through this process, functional group-
enriched cyclohexanes were prepared with excellent yields and
good diastereoselectivity. The asymmetric transformation and
application of this approach in natural product total synthesis
are currently under investigation.
ESIw.
11 Some literature reported examples: (a) C. Reddy, V. Reddy and
J. G. Verkade, J. Org. Chem., 2007, 72, 3093–3096; (b) M. Hirano,
M. Hirai, Y. Ito, T. Tsurumaki, A. Baba, A. Fukuoka and
S. Komiya, J. Organomet. Chem., 1998, 569, 3–14.
12 C. Pidathala, L. Hoang, N. Vignola and B. List, Angew. Chem.,
Int. Ed., 2003, 42, 2785–2788.
13 For compounds 4 and 7, less than 20% ee was observed with
L-proline as the catalyst.
ꢀc
This journal is The Royal Society of Chemistry 2009
5152 | Chem. Commun., 2009, 5150–5152