4
Tetrahedron
H.; Matsuoka, H.; Morikawa, K.; Suzuki, M.; Hagita, H.; Ozawa,
K.; Yamaguchi, K.; Kato, M.; Ikeda, S. J. Med. Chem. 2012, 55,
7828–7840; (d) Rische, T.; Eilbracht, P. Tetrahedron 1999, 55,
1915–1920.
(a) Conn, M. M.; Rebek, J. Chem. Rev. 1997, 97, 1647–1668; (b)
Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303–1324; (c)
Jasat, A.; Sherman, J. C. Chem. Rev. 1999, 99, 931–967; (d) Philp,
D.; Stoddart, J. F. Angew. Chem. Int. Ed. Engl. 1996, 35, 1154–
1196.
1
2
3
4
5
6
3 mg
3 mg
3 mg
3 mg
3 mg
3 mg
5 ml
--
--
--
5 ml
1 ml
--
--
4 ml
5 ml
--
--
8.
138 mg
138 mg
138 mg
5 ml
1 ml
4 ml
9.
(a) Chowdhury, S.; Georghiou, P. E. Tetrahedron Lett. 1999, 40,
7599–7603; (b) Langle, S.; Abarbri, M.; Duchêne, A. Tetrahedron
Lett. 2003, 44, 9255–9258; (c) Chahen, L.; Doucet, H.; Santelli, M.
Synlett. 2003, 11, 1668–1672; (d) Nobre, S. M.; Wolke, S. I.; da
Rosa, R. G.; Monteiro, A. L. Tetrahedron Lett. 2004, 45, 6527-
6530; (e) Nobre, S. M.; Monteiro, A. L. Tetrahedron Lett. 2004, 45,
8225–8228; (f) Chang, C. P.; Huang, Y. L.; Hong, F. E.
Tetrahedron 2005, 61, 3835–3839; (g) Burns, M. J.; Fairlamb, I. J.
S.; Kapdi, A. R.; Sehnal, P.; Taylor, R. J. K. Org. Lett. 2007, 9,
5397–5400; (h) Inés, B.; Moreno, I.; SanMartin, R.; Domínguez, E.
J. Org. Chem. 2008, 73, 8448–8451; (i) Fairlamb, I. J. S.; Sehnal,
P.; Taylor, R. J. K. Synthesis 2009, 3, 508–510; (j) Zhang, Y. Q. J.
Chem. Research 2013, 7, 375–376; (k) Guan, Z. H.; Li, B. Y.; Hai,
G. L.; Yang, X. J.; Li, T.; Tan, B. E. RSC Adv. 2014, 4, 36437–
36443; (l) Botella, L.; Nájera, C. Angew. Chem. Int. Ed. 2002, 41,
179–181; (m) Botella, L.; Nájera, C. J. Organomet. Chem. 2002,
663, 46–57; (n) Baleizão, C.; Corma, A.; García, H.; Leyva, A. J.
Org. Chem. 2004, 69, 439–446; (o) Alacid, E.; Nájera, C. J.
Organomet. Chem. 2009, 694, 1658–1665; (p) Nájera, C.; Gil-
Moltó, J.; Karlström, S. Adv. Synth. Catal. 2004, 346, 1798–1811;
(q) Yu, A. J.; Li, X. D.; Peng, D. P.; Wu, Y. J.; Chang, J. B. Appl.
Organometal. Chem. 2012, 26, 301–304; (r) Singh, R.; Viciu, M.
S.; Kramareva, N.; Navarro, O.; Nolan, S. P. Org. Lett. 2005, 7,
1829–1832; (s) Kuriyama, M.; Shinozawa, M.; Hamaguchi, N.;
Matsuo, S.; Onomura, O. J. Org. Chem. 2014, 79, 5921−5928.
10. Bandgar, B. P.; Bettigeri, S. V.; Phopase, J. Tetrahedron Lett. 2004,
45, 6959–6962.
a All above studies were carried out at 90 oC, 1h, under air.
Figure 1 the corresponding phenomenon of Table 4
Conclusion
To sum up, we have developed a simple and efficient method
to prepare diarylmethane derivatives in good yields under mild
experimental conditions. Various functional groups that are
available for further functionalization could survive in our
catalytic system. DMF functions as solvent and weak ligand in
our catalytic system. Further study about the scope, mechanism
and synthetic applications of our catalytic system is ongoing.
Acknowledgments
We are grateful to the Natural Science Foundation of China
(20772114, 21172200), Research Program of Fundamental and
Advanced Technology of Henan Province (122300413203), and
Technology Research and Development Funds of Zhengzhou
(141PRCYY516) for financial support.
11. (a) Young, A. C. M.; Walters, M. A.; Dewan, J. C. Acta Cryst.
1989, C45, 1733–1736; (b) Suzuki, H.; Fukushima, N.; Ishiguro, S.
I. Acta Cryst. 1991, C47, 1838–1842; (c) Suzuki, H.; Ishiguro, S. I.
Acta Cryst. 1998, C54, 586–588; (d) Morimoto, T.; Nakajima, T.;
Sawa, S.; Nakanishi, R.; Imori, D.; Ishitani, O. J. Am. Chem. Soc.
2013, 135, 16825–16828; (e) Senchurova, L. A.; Yustratov, V. P.;
Gel'fman, M. I. Zhurnal Neorganicheskoi Khimii 1996, 41, 97–99;
(f) Hosokawa, T.; Nomura, T.; Murahashi, S. I. J. Organomet.
Chem. 1998, 551, 387-389.
References and notes
1.
2.
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
LeBlond, C. R.; Andrews, A. T.; Sun, Y. K.; Sowa, J. R. Org. Lett.
2001, 10, 1555–1557.
12. (a) Pastoriza–Santos, I.; Liz–Marzán, L. M. Langmuir 1999, 15,
948–951; (b) Liu, X. F.; Li, C. H.; Xu, J. L.; Lv, J.; Zhu, M.; Guo,
Y. B.; Cui, S.; Liu, H. B.; Wang, S.; Li, Y. L. J. Phys. Chem. C
2008, 112, 10778–10783; (c) Pastoriza-Santos, I.; Liz-Marzán, L.
M. Adv. Funct. Mater. 2009, 19, 679–688; (d) Kawasaki, H.;
Yamamoto, H.; Fujimori, H.; Arakawa, R.; Inada, M.; Iwasaki, Y.
Chem. Commun. 2010, 46, 3759–3761; (e) Aguirre, M. E.;
Rodríguez, H. B.; Román, E. S.; Feldhoff, A.; Grela, M. A. J. Phys.
Chem. C 2011, 115, 24967–24974; (f) Carpenter, M. K.; Moylan, T.
E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem.
Soc. 2012, 134, 8535–8542.
3.
4.
5.
6.
7.
Liu, L. F.; Zhang, Y. H.; Xin, B. W. J. Org. Chem. 2006, 71, 3994–
3997.
Deng, C. L.; Guo, S. M.; Xie, Y. X.; Li, J. H. Eur. J. Org. Chem.
2007, 1457–1462.
Yang, W. B.; Liu, C.; Qiu, J. S. Chem. Commun. 2010, 46, 2659–
2661.
Liu, C.; Ni, Q. J.; Bao, F. Y.; Qiu, J. S. Green Chem. 2011, 13,
1260–1266.
(a) Wai, J. S.; Egbertson, M. S.; Payne, L. S.; Fisher, T. E.;
Embrey, M. W.; Tran, L. O.; Melamed, J. Y.; Langford, H. M.;
Guare, J. P.; Zhuang, L. H.; Grey, V. E.; Vacca, J. P.; Holloway, M.
K.; Naylor-Olsen, A. M.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.;
Stillmock, K. A.; Schleif, W. A.; Gabryelski, L. J.; Young, S. D. J.
Med. Chem. 2000, 43, 4923–4926; (b) Long, Y. Q.; Jiang, X. H.;
Dayam, R.; Sanchez, T.; Shoemaker, R.; Sei, S.; Neamati, N. J.
Med. Chem. 2004, 47, 2561–2573; (c) Ohtake, Y.; Sato, T.;
Kobayashi, T.; Nishimoto, M.; Taka, N.; Takano, K.; Yamamoto,
K.; Ohmori, M.; Yamaguchi, M.; Takami, K.; Yeu, S. Y.; Ahn, K.
13. (a) de Vries, A. H. M.; Mulders, J. M. C. A.; Mommers, J. H. M.;
Henderickx, H. J. W.; de Vreies, J. G. Org. Lett. 2003, 5, 3285–
3288. (b) Reetz, M. J.; de Vries, J. G. Chem. Commun. 2004, 1559–
1563.
Click here to remove instruction text...