2548 Chem. Mater. 2010, 22, 2548–2554
DOI:10.1021/cm9034787
Tetraphenylpyrene-Bridged Periodic Mesostructured Organosilica Films
with Efficient Visible-Light Emission
Norihiro Mizoshita,†,‡ Yasutomo Goto,†,‡ Yoshifumi Maegawa,†,‡ Takao Tani,†,‡ and
Shinji Inagaki*,†,‡
†Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan, and ‡Core Research for
Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi,
Saitama 332-0012, Japan
Received November 15, 2009
Mesostructured organosilica films with strong blue fluorescence emission were synthesized by
surfactant-templated sol-gel polycondensation using a 1,3,6,8-tetraphenylpyrene (TPPy)-containing
organosilane precursor. The TPPy precursor, which contained four polymerizable silyl groups, was
suitable for the preparation of mesostructured films with high TPPy content in the framework. The
fluorescence quantum yields of the TPPy-bridged mesostructured organosilica films reached more than
0.7, despite the dense accumulation of TPPy units within the framework. Doping of the mesostructured
films with fluorescence dyes enabled fine-tuning of the emission colors over a wide range of the visible
spectrum. Such mesostructured organosilica films, in which different chromophores can be distributed
into the framework and mesopores, have significant potential for luminescence applications.
Introduction
into the pore walls of PMOs as the R bridging group.5-18
The density, distribution, and molecular-scale ordering of
the bridging groups within pore walls can be controlled by
the molecular design of the precursors, optimization of
the synthesis conditions, and appropriate selection of the
co-condensation technique.19-30 Expansion of the varia-
tion of organic bridges has broadened the potential
applications of PMOs to optical materials, solid catalysts,
sensing systems, and electronic devices.31-35
Periodic mesoporous organosilica (PMO) is a versatile
inorganic/organic hybrid with mesoscale porous struc-
tures and molecular-scale functionalities.1-4 PMOs are
synthesized by surfactant-templated sol-gel polyconden-
sation of organic-bridged alkoxysilane precursor com-
pounds, generally represented as R[Si(OR’)3]n (n g 2).
Various organic species ranging from hydrocarbons and
heteroaromatics to metal complexes have been introduced
*Corresponding author. E-mail: inagaki@mosk.tytlabs.co.jp.
€
(1) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angew. Chem.,
(18) Wahab, M. A.; Hussian, H.; He, C. Langmuir 2009, 25, 4743–4750.
ꢀ
(19) Alvaro, M.; Benı
´
tez, M.; Cabeza, J. F.; Garcı
´
a, H.; Leyva, L.
Int. Ed. 2006, 45, 3216–3251.
J. Phys. Chem. C 2007, 111, 7532–7538.
(20) Wahab, M. A.; Sudhakar, S.; Yeo, E.; Sellinger, A. Chem. Mater.
2008, 20, 1855–1861.
(21) Yang, Y.; Sayari, A. Chem. Mater. 2008, 20, 2980–2984.
(22) Goto, Y.; Nakajima, K.; Mizoshita, N.; Suda, M.; Tanaka, N.;
Hasegawa, T.; Shimada, T.; Tani, T.; Inagaki, S. Microporous
Mesoporous Mater. 2009, 117, 535–540.
(23) Mizoshita, N.; Goto, Y.; Tani, T.; Inagaki, S. Adv. Funct. Mater.
2008, 18, 3699–3705.
(24) Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416,
304–307.
(25) Kapoor, M. P.; Yang, Q.; Inagaki, S. J. Am. Chem. Soc. 2002, 124,
15176–15177.
ꢀ~
ꢀ
(2) Descalzo, A. B.; Martı
´
nez-Manez, R.; Sancenon, F.; Hoffmann,
K.; Rurack, K. Angew. Chem., Int. Ed. 2006, 45, 5924–5948.
(3) Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891–908.
(4) Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151–3168.
(5) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O.
J. Am. Chem. Soc. 1999, 121, 9611–9614.
(6) Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Chem.
Mater. 1999, 11, 3302–3308.
(7) Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature
1999, 402, 867–871.
(8) Yoshina-Ishii, C.; Asefa, T.; Coombs, N.; MacLachlan, M. J.;
Ozin, G. A. Chem. Commun. 1999, 2539–2540.
(9) Kuroki, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.;
Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 13886–13895.
(10) Olkhovyk, O.; Jaroniec, M. J. Am. Chem. Soc. 2005, 127, 60–61.
(11) Peng, H.; Tang, J.; Yang, L.; Pang, J.; Ashbaugh, H. S.; Brinker,
C. J.; Yang, Z.; Lu, Y. J. Am. Chem. Soc. 2006, 128, 5304–5305.
(12) Maegawa, Y.; Goto, Y.; Inagaki, S.; Shimada, T. Tetrahedron Lett.
2006, 47, 6957–6960.
(13) Minoofar, P. N.; Dunn, B. S.; Zink, J. I. J. Am. Chem. Soc. 2005,
127, 2656–2665.
(14) Johansson, E.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 14437–
14443.
€
(15) Cornelius, M.; Hoffmann, F.; Ufer, B.; Behrens, P.; Froba, M.
J. Mater. Chem. 2008, 18, 2587–2592.
(16) Nguyen, T. P.; Hesemann, P.; Gaveau, P.; Moreau, J. J. E.
J. Mater. Chem. 2009, 19, 4164–4171.
(17) Takeda, H.; Goto, Y.; Maegawa, Y.; Ohsuna, T.; Tani, T.;
Matsumoto, K.; Shimada, T.; Inagaki, S. Chem. Commun. 2009,
6032–6034.
(26) Kapoor, M. P.; Yang, Q.; Inagaki, S. Chem. Mater. 2004, 16, 1209–
1213.
(27) Sayari, A.; Wang, W. J. Am. Chem. Soc. 2005, 127, 12194–12195.
€
(28) Cornelius, M.; Hoffmann, F.; Froba, M. Chem. Mater. 2005, 17,
6674–6678.
(29) Xia, Y.; Wang, W.; Mokaya, R. J. Am. Chem. Soc. 2005, 127, 790–
798.
(30) Mizoshita, N.; Goto, Y.; Kapoor, M. P.; Shimada, T.; Tani, T.;
Inagaki, S. Chem.-Eur. J. 2009, 15, 219–226.
(31) Hunks, W. J.; Ozin, G. A. J. Mater. Chem. 2005, 15, 3716–3724.
(32) Yang, Q.; Liu, J.; Zhang, L.; Li, C. J. Mater. Chem. 2009, 19, 1945–
1955.
(33) Angelos, S.; Johansson, E.; Stoddart, J. F.; Zink, J. I. Adv. Funct.
Mater. 2007, 17, 2261–2271.
(34) Liong, M.; Angelos, S.; Choi, E.; Patel, K.; Stoddart, J. F.; Zink,
J. I. J. Mater. Chem. 2009, 19, 6251–6257.
(35) Mizoshita, N.; Ikai, M.; Tani, T.; Inagaki, S. J. Am. Chem. Soc.
2009, 131, 14225–14227.
r
2010 American Chemical Society
pubs.acs.org/cm
Published on Web 03/23/2010