DFT and TD-DFT calculations
7.21–7.30 (m, 1H, CH–Ph), 7.26 (m, 5H, Ph) ppm; MS: m/z (%)
530.5 [Au(C6F5)2]-, 1124.5 [Au2Cu(C6F5)4]- (ES-).
The molecular structures used in the theoretical studies on
≡
≡
[AuCu(C6F5)2(N C–CH3)2] (1a), [AuCu(C6F5)2(N C–Ph)2]2 (2a)
Acknowledgements
≡
=
and [AuCu(C6F5)2(N C–CH CH–Ph)2] (3a) were taken from the
X-ray diffraction data for complexes 1–3, respectively. Keeping all
distances, angles and dihedral angles frozen, single-point DFT
calculations were performed on the models. In them, the single-
point ground-state calculations and the subsequent calculations
of the electronic excitation spectra, the B3-LYP functional19
as implemented in TURBOMOLE20 was used. The excitation
energies were obtained at the density functional level by using
the time-dependent perturbation theory approach (TD-DFT),21–25
which is a DFT generalization of the Hartree–Fock linear response
(HF-LR) or random-phase approximation (RPA) method.26
In all calculations, the Karlsruhe split-valence quality basis
sets27 augmented with polarization functions28 were used (SVP).
The Stuttgart effective core potentials in TURBOMOLE were
used for Au and Cu.29 Calculations were performed without any
assumption of symmetry for 1a–3a.
The D.G.I.(MEC)/FEDER (CTQ2007-67273-C02-02) project
is acknowledged for financial support. M. Rodr´ıguez-Castillo
thanks the C.A.R. for a grant. Professor Vivian W. W. Yam is
thanked for fruitful discussions.
References
1 Modern Supramolecular Gold Chemistry, ed. A. Laguna, Wiley-VCH,
Weinheim, 2008.
2 (a) P. Pyykko¨, Chem. Rev., 1997, 97, 597; (b) P. Pyykko¨, Angew. Chem.,
Int. Ed., 2004, 43, 4412; (c) P. Pyykko¨, Inorg. Chim. Acta, 2005, 358,
4113; (d) P. Pyykko¨, Chem. Soc. Rev., 2008, 37, 1967.
3 (a) E. J. Ferna´ndez, A. Laguna and J. M. Lo´pez-de-Luzuriaga, Dalton
Trans., 2007, 1969; (b) J. M. Forward, J. P. Fackler, Jr., Z. Assefa, in
Optoelectronic Properties of Inorganic Compounds, ed. D. M. Roundhill
and J. P. Fackler, Jr. , Plenum, New York, 1999, pp. 195–226.
4 (a) E. J. Ferna´ndez, A. Laguna, J. M. Lo´pez-de-Luzuriaga and M.
Monge, Spanish Patent P200001391, 2003; (b) E. J. Ferna´ndez, J. M.
Lo´pez-de-Luzuriaga, M. Monge, M. E. Olmos, J. Pe´rez, A. Laguna,
A. A. Mohamed and J. P. Fackler, Jr., J. Am. Chem. Soc., 2003, 125,
2022; (c) E. J. Ferna´ndez, J. M. Lo´pez-de-Luzuriaga, M. Monge, M. E.
Olmos, R. C. Puelles, A. Laguna, A. A. Mohamed and J. P. Fackler, Jr.,
Inorg. Chem., 2008, 47, 8069; (d) H. V. R. Dias, H. V. K. Diyabalanage,
M. G. Eldabaja, O. Elbjeirami, M. A. Rawashdeh-Omary and M. A.
Omary, J. Am. Chem. Soc., 2005, 127, 7489.
Synthesis
≡
Preparation of [AuCu(C6F5)2(N C–Me)2] (1). To an acetoni-
trile solution (20 ml) of [Au2Ag2(C6F5)4(N C–Me)2]n (96 mg,
8
≡
0.070 mmol) was added CuCl (14 mg, 0.141 mmol) and a
precipitate is observed (AgCl). The mixture was stirred for 2 h and
the solid was eliminated by filtration. The solvent of the solution
was evaporated to ca. 5 ml and addition of Et2O (20 ml) at low
temperature led to precipitation of complex 1 as a white solid.
Yield: 70%. KM = 112 X-1 cm2 mol-1. Elemental analysis (%) calcd.
for 1 (C16H6AuCuF10N2): C 28.40, H 0.89, N 4.14; found: C 28.28,
H 0.78, N 4.33; 19F (298 K, CD3CN) d = -162.84 (m, 2F, Fm),
5 (a) E. J. Ferna´ndez, M. C. Gimeno, A. Laguna, J. M. Lo´pez-de-
Luzuriaga, M. Monge, P. Pyykko¨ and D. Sundholm, J. Am. Chem.
Soc., 2000, 122, 7287; (b) E. J. Ferna´ndez, A. Laguna, J. M. Lo´pez-de-
Luzuriaga, M. Monge, M. Montiel, M. E. Olmos, R. C. Puelles and
J. C. Sa´enz, Dalton Trans., 2005, 1162; (c) E. J. Ferna´ndez, P. G. Jones,
A. Laguna, J. M. Lopez-de-Luzuriaga, M. Monge, M. E. Olmos and
R. C. Puelles, Organometallics, 2007, 26, 5931; (d) E. J. Ferna´ndez, A.
Laguna, J. M. Lo´pez-de-Luzuriaga, M. Monge, M. E. Olmos and J.
Pe´rez, J. Am. Chem. Soc., 2002, 124, 5942; (e) V. J. Catalano, B. L.
Bennett and H. M. Kar, J. Am. Chem. Soc., 1999, 121, 10235; (f) A.
Burini, J. P. Fackler, Jr., R. Galassi, B. R. Pietroni and R. J. Staples,
Chem. Commun., 1998, 95; (g) A. Burini, R. Bravi, J. P. Fackler, Jr., R.
Galassi, T. A. Grant, M. A. Omary, B. R. Pietroni and R. J. Staples,
Inorg. Chem., 2000, 39, 3158; (h) A. Burini, A. J. P. Fackler, Jr., R.
Galassi, T. A. Grant, M. A. Omary, M. A. Rawashdeh-Omary, B. R.
Pietroni and R. J. Staples, J. Am. Chem. Soc., 2000, 122, 11264; (i) V. J.
Catalano, M. A. Malwitz and B. C. Noll, Chem. Commun., 2001, 581.
6 (a) E. J. Ferna´ndez, A. Laguna, J. M. Lo´pez-de-Luzuriaga, M. Monge,
P. Pyykko¨ and N. Runeberg, Eur. J. Inorg. Chem., 2002, 750; (b) E. J.
Ferna´ndez, A. Laguna, J. M. Lo´pez de Luzuriaga, M. Monge, M. E.
Olmos and R. C. Puelles, J. Phys. Chem. B, 2005, 109, 20652; (c) E. J.
Ferna´ndez, J. M. Lo´pez-de-Luzuriaga, M. Monge, M. Montiel, M. E.
Olmos, J. Pe´rez, A. Laguna, F. Mendizabal, A. A. Mohamed and
J. P. Fackler, Jr., Inorg. Chem., 2004, 43, 3573; (d) E. J. Ferna´ndez, A.
Laguna, J. M. Lo´pez de Luzuriaga, F. Mendizabal, M. Monge, M. E.
Olmos and J. Pe´rez, Chem.–Eur. J., 2003, 9, 456; (e) E. J. Ferna´ndez,
P. G. Jones, A. Laguna, J. M. Lo´pez-de-Luzuriaga, M. Monge, M. E.
Olmos and J. Pe´rez, Inorg. Chem., 2002, 41, 1056; (f) E. J. Ferna´ndez, A.
Laguna, J. M. Lo´pez-de-Luzuriaga, M. Monge, M. E. Olmos and M.
Montiel, Inorg. Chem., 2007, 46, 2953; (g) E. J. Ferna´ndez, A. Laguna,
J. M. Lo´pez-de-Luzuriaga, M. Monge, M. Nema, M. E. Olmos, J.
Pe´rez and C. Silvestru, Chem. Commun., 2007, 571; (h) M. A. Carvajal,
S. Alvarez and J. J. Novoa, Chem.–Eur. J., 2004, 10, 2117; (i) M. A.
Carvajal, J. J. Novoa and S. Alvarez, Theor. Chem. Acc., 2006, 116,
472; (j) S.-L. Zheng, C. L. Nygren, M. Messerschmidt and P. Coppens,
Chem. Commun., 2006, 3711; (k) S.-L. Zheng, A. Volkov, C. L. Nygren
and P. Coppens, Chem.–Eur. J., 2007, 13, 8583.
´
-161.64 (t, 1F, Fp, JF
(298 K, CD3CN) d = 1.95 (s, 3H, CH3) ppm; MS: m/z (%) 531.3
[Au(C6F5)2]-, 1125.4 [Au2Cu(C6F5)4]- (ES-).
= 19.4 Hz), -114.80 (m, 2F, Fo) ppm; 1H
–F
p
o
≡
[AuCu(C6F5)2(N C–Ph)2]2 (2). To a toluene solution (15 ml)
≡
of [AuCu(C6F5)2(N C–Me)2] (1) (95 mg, 0.140 mmol) was added
≡
N C–Ph (60 ml, exc.) and after 30 min of stirring the solvent was
evaporated to ca. 5 ml. Addition of n-hexane gave rise to a white
solid. Yield: 50%. KM = 234 X-1 cm2 mol-1. Elemental analysis (%)
calcd. for 2 (C52H20Au2Cu2F20N4): C 38.99, H 1.26, N 3.50; found:
C 38.99, H 1.40, N 3.41; 19F (298 K, CD3CN) d = -162.86 (m,
2F, Fm), -161.67 (t, 1F, Fp, JF
= 19.4 Hz), -114.81 (m, 2F, Fo)
–F
p
o
ppm; 1H (298 K, CD3CN) d = 7.30 (m, 2H, H3, H5), 7.44 (m, 1H,
H4), 7.48 (m, 2H, H2, H6) ppm; MS: m/z (%) 530.6 [Au(C6F5)2]-,
1124.6 [Au2Cu(C6F5)4]- (ES-).
≡
=
[AuCu(C6F5)2(N C–CH CH–Ph)2] (3). To a solution of
≡
[AuCu(C6F5)2(N C–Me)2] (1) (90 mg, 0.133 mmol) in 15 ml of
≡
=
toluene was added N C–CH CH–Ph (80 ml, exc.). The mixture
was stirred for 30 min and the solvent was evaporated to ca. 5 ml.
Addition of n-hexane (15 ml) led to precipitation of complex 3
as a white solid. Yield: 60%. KM = 112 X-1 cm2 mol-1. Elemental
analysis (%) calcd. for 3 (C30H14AuCuF10N2): C 42.25, H 1.65, N
3.28; found: C 42.57, H 1.81, N 3.80; 19F (298 K, CD3CN) d =
7 E. J. Ferna´ndez, A. Laguna, J. M. Lo´pez-de-Luzuriaga, M. Monge, M.
Montiel and M. E. Olmos, Inorg. Chem., 2005, 44, 1163.
8 E. J. Ferna´ndez, A. Laguna, J. M. Lo´pez-de-Luzuriaga, M. Monge, M.
Montiel, M. E. Olmos and M. Rodr´ıguez-Castillo, Organometallics,
2006, 26, 3639.
-162.86 (m, 2F, Fm), -161.67 (t, 1F, Fp, JF
= 19.4 Hz), -114.80
–F
p
o
(m, 2F, Fo) ppm; 1H (298 K, CD3CN) d = 5.86 (m, 1H, CH–CN),
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 7509–7518 | 7517
©