C. Seo et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6095–6097
6097
One reason for this is that most of these compounds were developed
Supplementary data
to target the positively charged active site of PTP1B, thus leading to
low cell permeability.13 Second, most PTPs are known to share a
highly conserved catalytic domain that can be broadly inhibited
by nonspecific inhibitors.8 Therefore, the development of novel
PTP1B inhibitors with improved target-specificity and bioavailabil-
ity is still necessary. In this study, aquastatin A (1) was identified as
competitive inhibitor of PTP1B, and the hydrolyzing studies on the
compound led to the identification of dihydroxypentadecyl benzoic
acid as a key pharmacophore. Aquastatin A (1) showed modest but
selective inhibitory activity for PTP1B over other PTPs such as
TCPTP, SHP-2, LAR and CD45. In addition, the pentadecyl moiety
in the molecule could aid in its ability to diffuse into target cells
to inhibit intracellular PTPs. Therefore, aquastatin A (1) and/or the
essential structural feature identified in this study could be viewed
as potential lead compounds for the treatment of diabetes and obes-
ity. Further optimization of the structures with aiming their selec-
tive potency and efficacy in vivo would be beneficial.
Supplementary data associated with this article can be found, in
References and notes
1. Proksch, P.; Edrada, R. A.; Ebel, R. Appl. Microbial. Biotechnol. 2002, 59, 125.
2. Fenical, W.; Jensen, P. R. Nat. Chem. Biol. 2006, 2, 666.
3. Bugni, T. S.; Ireland, C. M. Nat. Prod. Rep. 2004, 21, 143.
4. Faulkner, D. J. Nat. Prod. Rep. 2000, 19, 1.
5. Tonks, N. K. Nat. Rev. Mol. Cell Biol. 2006, 7, 833.
6. Fisher, E. H.; Charbonneau, H.; Tonks, N. K. Science 1991, 253, 401.
7. Hunter, T. Cell 1995, 80, 225.
8. Bialy, L.; Waldmann, H. Angew. Chem., Int. Ed. 2005, 44, 3814.
9. Koren, S. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 621.
10. Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A. L.;
Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C. C.; Ramachandran, C.;
Gresser, M. J.; Tremblay, M. L.; Kennedy, B. P. Science 1999, 283, 1544.
11. Klaman, L. D.; Boss, O.; Peroni, O. D.; Kim, J. K.; Martino, J. L.; Zabolotny, J. M.;
Moghal, N.; Lubkin, M.; Kim, Y. B.; Sharpe, A. H.; Stricker-Krongrad, A.;
Shulman, G. I.; Neel, B. G.; Kahn, B. B. Mol. Cell. Biol. 2000, 20, 5479.
12. Zhang, S.; Zhang, Z.-Y. Drug Discovery Today 2007, 12, 373.
13. Liu, S.; Zeng, L.-F.; Wu, L.; Yu, X.; Xue, T.; Gunawan, A. M.; Long, Y.-Q.; Zhang,
Z.-Y. J. Am. Chem. Soc. 2008, 130, 17075.
Acknowledgments
14. Hamano, K.; Kinoshita-Okami, M.; Minagawa, K.; Haruyama, H.; Kinoshita, T.;
Hosoya, T.; Furuya, K.; Kinoshita, K.; Tabata, K.; Hemmi, A.; Tanzawa, K. J.
Antibiot. 1993, 46, 1648.
15. Zhang, Y.-N.; Zhang, W.; Hong, D.; Shen, Q.; Li, J.-Y.; Li, J.; Hu, L.-H. Bioorg. Med.
Chem. 2008, 16, 8697.
16. Na, M.; Oh, W. K.; Kim, Y. H.; Cai, X. F.; Kim, S.; Kim, B. Y.; Ahn, J. S. Bioorg. Med.
Chem. Lett. 2006, 16, 3061.
17. Wang, P.; Zhang, Z.; Yu, B. J. Org. Chem. 2005, 70, 8884.
18. Sontag, B.; Dasenbrock, J.; Arnold, N.; Steglich, W. Eur. J. Org. Chem. 1999, 1051.
This research was supported in part by the grants from Global
Partnership Program (No. M60602000001-06E0200-00100) of Kor-
ea Foundation for International Cooperation of Science & Technol-
ogy (KICOS) through the grant provided by the Korean Ministry of
Education, Science & Technology (MEST), and KRIBB Research Initi-
ation Program. We gratefully acknowledge S.-Y. Kim for her techni-
cal support of this project.