7280
K. Seio et al. / Bioorg. Med. Chem. 17 (2009) 7275–7280
3. Jackson, A.; Burchard, J.; Leake, D.; Reynold, A.; Schelter, J.; Guo, J.; Johnson, J.
4.5. Tm measurement
M.; Lim, L.; Karpilow, J.; Nichols, K.; Marshall, W.; Khvorova, A.; Linsley, P. S.
RNA 2006, 12, 1197.
Each oligonucleotide was dissolved in 10 mM sodium phos-
phate (pH 7.0) containing 150 mM NaCl and 0.1 mM EDTA so that
the final concentration of each oligonucleotide became 2 lM. The
solution was separated into quartz cells (10 mm) and incubated
at 85 °C. After 10 min, the solution was cooled to 5 °C at a rate of
0.5 °C/min and heated to 85 °C at the same rate. During this
annealing and melting, the absorption at 260 nm was recorded
and used to draw UV-melting curves. The Tm value was calculated
as the temperature that gave the maximum of the first derivative
of the UV-melting curve.
4. Bryan, A.; Kraynack, B. A.; Baker, A. F. RNA 2006, 12, 163.
5. Beuvink, I.; Kolb, F. A.; Budach, W.; Granier, A.; Lange, J.; Natt, F.; Dengler, U.;
Hall, J.; Filipowicz, W.; Weiler, J. Nucleic Acids Res. 2007, 35, e52.
6. Freier, S. M.; Altmann, K.-H. Nucleic Acids Res. 1997, 25, 4429.
7. Inoue, H.; Hayase, Y.; Imura, A.; Iwai, S.; Miura, K.; Ohtsuka, E. Nucleic Acids Res.
1987, 15, 6131.
8. Martin, P. Helv. Chim. Acta 1995, 78, 486.
9. Martin, P. Helv. Chim. Acta 1996, 79, 1930.
10. Martin, P. Helv. Chim. Acta 2003, 86, 204.
11. Baker, B. F.; Lot, S. S.; Condon, T. P.; Cheng-Flournoy, S.; Lesnik, E. A.; Sasmor, H.
M.; Bennett, C. F. J. Biol. Chem. 1997, 272, 11994.
12. Teplova, M.; Minasov, G.; Tereshko, V.; Inamati, G. B.; Cook, P. D.; Manoharan,
M.; Egli, M. Nat. Strut. Biol. 1997, 6, 535.
13. Maier, M. A.; Guzaev, A. P.; Manoharan, M. Org. Lett. 2000, 2, 1819–1822.
14. Rajeev, K. G.; Prakash, T. P.; Manoharan, M. Org. Lett. 2003, 5, 3005.
15. Yu, R. Z.; Geary, R. S.; Monteith, D. K.; Matson, J.; Truong, L.; Fitchett, J.; Levin, A.
A. J. Pharm. Sci. 2004, 93, 48.
16. Grotli, M.; Douglas, M.; Eritja, R.; Sproat, B. S. Tetrahedron 1998, 54, 5899.
17. Griffey, R. H.; Monia, B. P.; Cummins, L. L.; Freier, S.; Greig, M. J.; Guinosso, C. J.;
Lesnik, E.; Manalili, S. M.; Mohan, V.; Owens, S.; Ross, B. R.; Sasmor, H.;
Wancewicz, E.; Weiler, K.; Wheeler, P. D.; Cook, P. D. J. Med. Chem. 1995, 39,
5100–5109.
18. Prakash, T. P.; Manoharan, M.; Fraser, A. S.; Kawasaki, A. M.; Lesnik, E. A.;
Owens, S. R. Tetrahedron Lett. 2000, 41, 4855.
19. Prakash, T. P.; Kawasaki, A. M.; Lesnik, E. A.; Owens, S. R.; Manoharan, M. Org.
Lett. 2003, 5, 403.
4.6. MD simulation
The atomic charges of 20-O-carbamoyluridine were estimated
*
from the ab initio calculation at the HF/6-31G level performed
using Gaussian03.38 The structures obtained by two 5.4-ns MD
simulations of the 20-O-Me RNA and RNA duplex containing the
20-O-CONH2 group at the central position, at constant temperature
(300 K) and pressure (1 atm), were generated using the AMBER 9.0
molecular simulation package.39
20. Pattanayek, R.; Sethaphong, L.; Pan, C.; Prhavc, M.; Prakash, T. P.; Manoharan,
M.; Egli, M. J. Am. Chem. Soc. 2004, 126, 15006.
21. Saneyoshi, H.; Seio, K.; Sekine, M. J. Org. Chem. 2005, 70, 10453.
22. Sundaralingam, M.; Pan, B. Biophys. Chem. 2002, 95, 273.
23. Auffinger, P.; Westhof, E. Angew. Chem., Int. Ed. 2001, 40, 4648.
24. Auffinger, P.; Westhof, E. J. Mol. Biol. 2000, 300, 1113.
25. Banerjee, R.; Maji, S. K.; Banerjee, A. Acta Crystallogr., Sect. C 2000, 56, 1120.
26. Semetey, V.; Hemmerlin, C.; Didierjean, C.; Schaffner, A. P.; Giner, A. G.; Aubry,
A.; Briand, J. P.; Marraud, M.; Guichard, G. Org. Lett. 2001, 3, 3843–3846.
27. Miyata, K.; Kobori, A.; Tamamushi, R.; Ohkubo, A.; Taguchi, H.; Seio, K.; Sekine,
M. Eur. J. Org. Chem. 2006, 3626–3637.
28. Markiewicz, W. T.; Biala, E.; Kierzek, R. Bull. Pol. Acad. Sci., Chem. 1984, 32, 433.
29. Westman, E.; Stromberg, R. Nucleic Acids Res. 1994, 22, 2430.
30. Hayakawa, Y.; Kataoka, M. J. Am. Chem. Soc. 1998, 120, 12395.
31. Altona, C. Recl. Trav. Chim. Pays-Bas 1982, 101, 413.
(i) System setup
The duplexes were placed in a box containing 32 Na+ and 10
Clꢀ in addition to 3631 TIP3P water molecules correspond-
ing to a concentration close to 0.15 M NaCl. The initial struc-
tures were generated using the NUCGEN module of AMBER.
In this calculation, the all-atom force field described by Cor-
nell et al. was employed.34 The box dimensions were chosen
such that they ensured a 10-Å solvation shell around the
duplexes.
(ii) MD simulation
The equilibration procedure consisted of 200 steps of steep-
est descent minimization without positional constraints, fol-
lowed by eight 50-ps MD simulations in which the solute
atoms were fixed at the initial positions. Then, the next
seven 50-ps MD runs were performed with positional con-
straints on the nucleic acid atoms of 10, 5, 2, 1, 0.5, 0.1,
and 0.01 kcal/mol. After the 400-ps equilibration phase, a
5.0-ns production run was performed from which only the
data of the last 200 ps were used to calculate the average
structure.
32. Prhavc, M.; Lesnik, E. A.; Mohan, V.; Manoharan, M. Tetrahedron Lett. 2001, 42, 8777.
33. Lesnik, E. A.; Guinosso, C. J.; Kawasaki, A. M.; Sasmor, H.; Zounes, M.; Cummins,
L. L.; Ecker, D. J.; Cook, P. D.; Freier, S. M. Biochemistry 1993, 32, 7832.
34. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M., Jr.; Ferguson, D.
M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc.
1995, 117, 5179.
35. Biswas, R.; Sundaralingam, M. J. Mol. Biol. 1997, 270, 511.
36. Biswas, R.; Wahl, M. C.; Ban, C.; Sundaralingam, M. J. Mol. Biol. 1997, 267, 1149.
37. Shi, K.; Wahl, M.; Sundaralingam, M. Nucleic Acids Res. 1999, 27, 2196.
38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
Gaussian 03, Revision C.02, 2004.
Acknowledgments
This study was supported by Industrial Technology Research
Grant Program in 005 from the New Energy and Industrial Technol-
ogy Development Organization (NEDO) of Japan. This study was
also supported by a Grant-in-Aid for Scientific Research (B)
20350074.
39. Case, A.; Darden, T. A.; Cheatham, T. E., III, Simmerling, C. L.; Wang, J.; Duke, R.
E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang, W.;
Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.;
Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.;
Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S. and Kollman, P. A.
AMBER 9.0.
References and notes
1. Czauderna, F.; Fechtner, M.; Dames, S.; Aygun, H.; Klippel, A.; Pronk, G. J.; Giese,
K.; Kaufmann, J. Nucleic Acid Res. 2003, 31, 2705.
2. Chiu, Y.; Rana, T. M. RNA 2003, 9, 1034.