C O M M U N I C A T I O N S
HMe2)3 ligand and HB(C6F5)3 counterion, revealing that the silene is
formed through borane-mediated ꢀ-H abstraction rather than ꢀ-hydride
elimination from a cationic (or zwitterionic) intermediate. SiH abstrac-
tion from silanes by strong Lewis acids is known to provide reactive
silyl cations,11,12 and the selectivity for SiH abstraction rather than
carbanion abstraction to give [(Me2HSi)3CB(C6F5)3]- may result from
steric hindrance.13 In contrast, no interaction between HC(SiHMe2)3
and B(C6F5)3 could be detected at room temperature in benzene-d6.
Likewise, Zn(C(SiHMe2)3)2 and B(C6F5)3 do not react at 65 °C in
benzene-d6 over 1 day.
hydridic to react with the much weaker Lewis acid BPh3. Interest-
ingly, reaction of BPh3 and 1b gave a mixture of Yb(C(SiHMe2)3)-
(HBPh3)(THF)n (4), Yb(HBPh3)2THF (5), and starting dialkyl 1b
in addition to silacyclobutane (eq 4):
Reaction of 2 equiv of BPh3 and 1b gave 5 and disilacyclobutane
(see the SI).
The different νBH of 2 (a, 2329 cm-1; b, 2308 cm-1) in the IR
The SiH groups in 1 and 2 are clearly hydridic on the basis of their
reactions with Lewis acids. Compounds 1 and 2 contain open
coordination sites on Lewis acidic metal centers and accessible
ꢀ-hydrogens that form agostic interactions. However, these alkyls are
clearly deactivated against ꢀ-elimination. Most likely, the M · · ·Si
interactions and delocalization of charge on the C(SiHMe2)3 ligand,
as evidenced by X-ray structures and IR spectroscopy, increase the
barrier to ꢀ-hydride elimination with respect to other pathways.
spectra suggest a M · · · HB interaction. For comparison, νBH in
14
[Cp*2ZrH][HB(C6F5)3] is 2364 cm-1
.
Three (2a) and two (2b)
bands are attributed to νSiH (2077, 2042, and 1957 cm-1 in 2a; 2074
and 1921 cm-1 in 2b).
Acknowledgment. We thank the U.S. Department of Energy,
Office of Basic Energy Sciences (DE-AC02-07CH11358) for
financial support.
Supporting Information Available: Experimental section and X-ray
crystallographic data for 1a, 1b, 2a, 2b, 3a, 5, and the 1,3-disilacy-
clobutane (CIF). This material is available free of charge via the Internet
Figure 2. ORTEP diagram of YbC(SiHMe2)3THF2(µ-H)(µ-F-C6F4)2BC6F5
(2b). THF is drawn using the ball-and-stick representation for clarity. Dashed
bonds represent close contacts between Yb and Si or H. Distances (Å):
Yb1-C27, 2.593(2); Yb1-Si1, 3.1016(7); Yb1-Si2, 3.0925(7). Angles
(deg): Yb1-C27-Si1, 87.42(9); Yb1-C27-Si2, 87.22(9).
References
(1) (a) Finnegan, R. A.; Kutta, H. W. J. Org. Chem. 1965, 30, 4138. (b) Glaze,
W. H.; Lin, J.; Felton, E. G. J. Org. Chem. 1965, 30, 1258. (c) Glaze,
W. H.; Adams, G. M. J. Am. Chem. Soc. 1966, 88, 4653. (d) Glaze, W. H.;
Lin, J.; Felton, E. G. J. Org. Chem. 1966, 31, 2643.
(2) Lindsell, W. E. In ComprehensiVe Organometallic Chemistry: The Synthesis,
Reactions, and Structures of Organometallic Compounds, 1st ed.; Wilkin-
son, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K.,
1982; Vol. 1, pp 155-252.
The Yb-C bond distances in neutral 1b and zwitterionic 2b
(Figure 2) are identical within error. In contrast, the Yb-Si distances
are shorter in 2b than in 1b by 0.08-0.09 Å. As in 1, only one
SiH is oriented directly toward the metal center [Yb1-H1s, 2.41(3)
Å; Yb1-C27-Si1-H1s, 0.84°], while the Yb1 · · ·H2s distance is
longer [2.60(3) Å, Yb1-C27-Si2-H2s, 35.10°]. Regardless, the
short Yb-Si distances and small Yb-C-Si angles strongly suggest
bonding interactions. Calculation of the solid angles,15 which
describe the percentage of space occupied by ligands around a metal
center, show that 20% of the space surrounding the Yb center is
open. Thus, interligand steric interactions are not responsible for
the short Yb · · · Si distances.
Thermolysis of 2b (353 K, benzene-d6, 5 days) provided a 4:3
mixture of HC(SiHMe2)3 and disilacyclobutane. The metal-contain-
ing product could not be identified. Disilacyclobutane again suggests
ꢀ-elimination; however, we considered a second possible mecha-
nism involving B(C6F5)3 dissociation from 2b followed by hydride
abstraction from another SiH. This pathway was tested by the
(3) (a) Wayda, A. L.; Evans, W. J. J. Am. Chem. Soc. 1978, 100, 7119. (b) Evans,
W. J.; Wayda, A. L.; Hunter, W. E.; Atwood, J. L. J. Chem. Soc., Chem.
Commun. 1981, 292. (c) Herbert, S.; Wolfgang, G.; Norbert, B. Angew. Chem.,
Int. Ed. Engl. 1981, 20, 119. (d) Watson, P. L.; Roe, D. C. J. Am. Chem.
Soc. 1982, 104, 6471. (e) Evans, W. J.; Meadows, J. H.; Wayda, A. L.;
Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1982, 104, 2015. (f)
Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51. (g) Schaverien,
C. J. Organometallics 1994, 13, 69. (h) Burger, B. J.; Thompson, M. E.;
Cotter, W. D.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 1566.
(4) Yan, K.; Pawlikowski, A. V.; Ebert, C.; Sadow, A. D. Chem. Commun.
2009, 656.
(5) Shannon, R. D. Acta Crystallogr. 1976, A32, 751.
(6) Cloke, F. G. N.; Hitchcock, P. B.; Lappert, M. F.; Lawless, G. A.; Royo,
B. J. Chem. Soc., Chem. Commun. 1991, 724.
(7) Eaborn, C.; Hawkes, S. A.; Hitchcock, P. B.; Smith, J. D. Chem. Commun.
1997, 1961.
(8) Eaborn, C.; Hitchcock, P. B.; Izod, K.; Smith, J. D. J. Am. Chem. Soc.
1994, 116, 12071.
(9) (a) Jordan, R. F.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc.
1986, 108, 7410. (b) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am.
Chem. Soc. 1989, 111, 2728. (c) Yang, X.; Stern, C. L.; Marks, T. J. J. Am.
Chem. Soc. 1994, 116, 10015.
(10) Hawrelak, E. J.; Ladipo, F. T.; Sata, D.; Braddock-Wilking, J. Organo-
metallics 1999, 18, 1804.
(11) (a) Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem.
1999, 64, 4887. (b) Blackwell, J. M.; Sonmor, E. R.; Scoccitti, T.; Piers,
W. E. Org. Lett. 2000, 2, 3921.
reaction of
2 equiv of B(C6F5)3 and 1, which provided
M(HB(C6F5)3)2THF2 (3) and 1 equiv of disilacyclobutane (eq 3):
(12) (a) Scott, V. J.; Celenligil-Cetin, R.; Ozerov, O. V. J. Am. Chem. Soc.
2005, 127, 2852. (b) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.
(c) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin,
L.; Lambert, J. B. Science 2002, 297, 825.
(13) (a) Gielens, E. E. C. G.; Tiesnitsch, J. Y.; Hessen, B.; Teuben, J. H.
Organometallics 1998, 17, 1652. (b) Cameron, T. M.; Gordon, J. C.;
Michalczyk, R.; Scott, B. L. Chem. Commun. 2003, 2282.
(14) Yang, X.; Stern, C. L.; Marks, T. J. Angew. Chem., Int. Ed. Engl. 1992,
31, 1375.
(15) (a) White, D.; Coville, N. J. AdV. Organomet. Chem. 1994, 36, 95. (b)
Guzei, I. A.; Wendt, M. Program Solid-G; University of Wisconsin:
Madison, WI, 2004.
This experiment clearly shows that B(C6F5)3-mediated H abstraction
from zwitterionic 2 is feasible. The product 3 contains two
HB(C6F5)3 ligands coordinated in the same κ3-H,F,F-tridentate
fashion [see the Supporting Information (SI)].
The SiH groups in 1 and 2 have sufficient hydride character to
react with the strong Lewis acid B(C6F5)3. They are also sufficiently
JA9070865
9
J. AM. CHEM. SOC. VOL. 131, NO. 42, 2009 15111