5
are orthogonal to those necessary for the removal of important hydroxyl and amino protecting groups, such as Ac, benzyl, allyl,
isopropylidene, benzylidene, Fmoc, and Troc. This feature makes the described approach highly suitable to the synthesis of complex
carbohydrates. The DMP group is stable in acidic, basic, and reducing conditions, as well as in the presence of various nucleophiles,
and it can be removed with an oxidizing agent, such as CAN.
Scheme 3. Removal of the DMP-protecting group using CAN and N-acetylation.
4. Conclusion
In summary, we succeeded in synthesizing glucosamine derivatives that comprise various N-aryl structures through the Buchwald–
Hartwig reaction. We used these compounds as glycosyl donors in chemical glycosylations and found that the N-DMP glucosaminyl
donor showed high β-selectivity. It has been reported that glycosylation with an N,N-dibenzyl glucosaminyl donor affords β-glycosides
via the aziridinium intermediate.20 Because increasing the electron-donating property of the aromatic ring of the N-aryl groups enhances
β-selectivity, glycosylation probably proceeds via the aziridine intermediate. The DMP-protecting group can be readily removed by
using CAN, but it is otherwise stable under various conditions. Therefore, use of this protecting group is expected to be applicable to
various carbohydrate syntheses.
Acknowledgments
We are grateful to Dr. Kazuya Kabayama, Dr. Atsushi Shimoyama and Dr. Yoshiyuki Manabe of Osaka University, for their helpful
discussions. This work was partially supported by JSPS KAKENHI Grant Number 15H05836 in Middle Molecular Strategy and JSPS
KAKENHI Grant Number 16H01885 (KF).
References and notes
1. (a) Zhu, X.; Schmidt, R. R.; Angew. Chem. Int. Ed. 2009, 48, 1900-1934; (b) Nigudkar, S. S.; Demchenko, A. V.; Chem. Sci. 2015, 6, 2687-2784.
2. Lu, S-R.; Lai, Y-H.; Chen, J-H.; Liu, C-Y.; and Mong, K-K. T.; Angew. Chem. Int. Ed. 2011, 50, 7315-7320.
3. (a) Barresi, F.; Hindsgaul, O.; J. Am. Chem. Soc. 1991, 113, 9376-9377; (b) Stork, G.; Kim, G.; J. Am. Chem. Soc. 1992, 114, 1087-1088; (c) Seward,
C. M. P.; Cumpstey, I.; Aloui, M.; Ennis, S. C.; Redgrave, A. J.; Fairbanks, A. J.; Chem. Commun. 2000, 1409-1410. (d) Ito, Y.; Ogawa, T.; Angew.
Chem., Int. Ed. 1994, 33, 1765-1768; (e) Ishiwata, A.; Munemura, Y.; Ito, Y.; Eur. J. Org. Chem. 2008, 4250-4263.
4. Yamada, T.; Takemura, K.; Yoshida, J.; Yamago, S.; Angew. Chem. Int. Ed. 2006, 45, 7575-7578.
5. Smoot, J. T.; Pornsuriyasak, P.; Demchenko, A. V.; Angew. Chem. Int. Ed. 2005, 44, 7123-7126.
6. Buda, S.; Gołe˛biowska, P.; Mlynarski, J.; Eur. J. Org. Chem. 2013, 3988–3991.
7. Hoang, K. L. M.; Liu, X-W.; Nat. Commun. 2014, 5, 5051.
8. Kim, J-H.; Yang, H.; Park, J.; Boons, G-J.; J. Am. Chem. Soc. 2005, 127, 12090-12097.
9. (a) Cox, D. J.; Fairbanks, A. J.; Tetrahedron Asymmetry 2009, 20 773-780; (b) Watson, A. J. A.; Alexander, S. R.; Cox, D. J.; Fairbanks, A. J.; Eur. J.
Org. Chem. 2016, 1520-1532.
10. (a) Ogawa, S.; Shibata, Y.; Carbohydr. Res. 1987, 170, 116-123; (b) Koto, S.; Inada, S.; Ogawa, H.; Zen, S.; Carbohydr. Res. 1982, 109, 276-281;
(c)Koto, S.; Hirooka, M.; Yago, K.; Komiya, M.; Shimizu, T.; Kato, K.; Takehara, T.; Ikefuji A.; Iwasa A., Hagino, S.; Sekiya, M.; Nakase, Y.; Zen,
S.; Tomonaga, F.; Shimada, S.; Bull. Chem. Soc. Jpn. 2000, 73, 173-183; (d) Bindschädler, P.; Dialer, L. O.; Seeberger, P. H.; J. Carbohydr. Chem.
2009, 28, 395-420.
11. (a) Yamamoto, T.; Tanaka, S-i.; Suga, S.; Watanabe, S.; Nagatomo, K.; Sasaki, A.; Nishiuchi, Y.; Teshima, T.; Yamada, K.; Bioorg. Med. Chem. Lett.
2011, 21, 4088-4096; (b) Otsuka, Y.; Sasaki, A.; Teshima, T.; Yamada, K.; Yamamoto, T.; Org. Lett. 2016, 18, 1338-1341.
12. (a) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994. 116, 5969-5970; (b) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994. 116, 7901-
7902; (c) Surry, D. S.;Buchwald, S. L.; Chem. Sci., 2011, 2, 27-50.
13. Tao, C.; Liu, F.; Liu, W.; Zhu, Y.; Li, Y.; Liu, X.; Zhao, J. Tetrahedron Lett. 2012, 53, 7093-7096.
14. Jalsa, N. K.; Tetrahedron Lett. 2011, 52, 6587-6590.
15. 2,4-Dinitrophenyl group and 2-nitrophenyl group can be cleaved by reduction and acetylation of nitro group, followed by oxidation with CAN in
yields similar to that of DMP group.
16. Lloyd, P. F.; Stacey, M.; Tetrahedron 1960, 9, 116-124.
17. Cai, J.; Davison, B. E.; Ganellina, C.R.; Thaisrivongs, S.; Wibley, K. S.; Carbohydr. Res. 1997, 300, 109-117.
18. Oltvoort, J. J.; Van Boeckel, C. A. A.; De Koning, J. H.; Van Boom, J. H. Synthesis 1981, 305-308.
19. Kronenthal, D. R.; Han, C. Y.; Taylor, M. K.; J. Org. Chem. 1982, 47, 2765-2768.
20. (a) Jiao, H.; Hindsgaul, O.; Angew. Chem. Int. Ed. 1999, 38, 346-348; (b) Ali, S. P.; Jalsa, N. K.; Carbohydr. Res. 2016, 420, 13-22.
A. Supplementary data
B. Supplementary data associated with this article can be found, in the online version, at xxxxxxxxxxxxxxxx.