An Efficient Synthesis of N-Arylsulfonylindoles
1
temperature. As shown in Table 2, it can be seen that a
variety of indoles, including those having electron-
deficient and electron-rich substituents, were effective
for this N-arylsulfonylation with arylsulfonyl chlorides.
Good to excellent yields (88%—100%) were obtained
(Table 2, Entries 1—12). For example, when 3-methyl-
indole (2b) was reacted with 1a in the presence of
TEBA and NaOH for 2 h, the corresponding compound
3b was obtained in a quantitative yield (Entry 2).
All the compounds were characterized by H NMR,
EI-MS and melting points.13 The typical spectral data of
3a: white solid, m.p. 83—84 ℃ (lit.14 87—88 ℃); H
1
NMR (CDCl3, 400 MHz) δ: 2.33 (s, 3H), 6.65 (d, J=
4.8 Hz, 1H), 7.20—7.33 (m, 4H), 7.51 (d, J=10 Hz,
1H), 7.56 (d, J=4.4 Hz, 1H), 7.75 (d, J=10.8 Hz, 2H),
7.97 (d, J=10.8 Hz, 1H); EI-MS m/z (%): 271 (M+,
100).
In conclusion, we have described an efficient and
mild procedure for the synthesis of N-arylsulfonylin-
doles from indoles and arylsulfonyl chlorides in the
presence of TEBA and NaOH. Good to excellent yields
(88%—100%) and easy workup made it an attractive
approach to prepare such important molecules.
References
1
2
3
Tsai, Y.; Dukat, M.; Slassi, A.; MacLean, N.; Demchyshyn,
L.; Savage, J. E.; Roth, B. L.; Hufesein, S.; Lee, M.; Glen-
non, R. A. Bioorg. Med. Chem. Lett. 2000, 10, 2295.
Russell, M. G. N.; Baker, R. J.; Barden, L.; Beer, M. S.;
Bristow, L.; Broughton, H. B.; Knowles, M.; McAllister, G.;
Patel, S.; Castro, J. L. J. Med. Chem. 2001, 44, 3881.
Pullagurla, M.; Siripurapu, U.; Kolanos, R.; Bondarev, M.
L.; Dukat, M.; Setola, V.; Roth, B. L.; Glennon, R. A. Bio-
org. Med. Chem. Lett. 2005, 15, 5298.
Experimental
The materials were used as purchased. Thin-layer
chromatography (TLC) and preparative thin-layer
chromatography (PTLC) were performed with silica gel
plates using silica gel 60 GF254 (Qingdao Haiyang
Chemical Co. Ltd.). Melting points were determined on
4
5
6
7
8
9
Brown, F. J.; Cronk, L. A.; Aharony, D.; Snyder, D. W. J.
Med. Chem. 1992, 35, 2419.
Ketcha, D. M.; Gribble, G. W. J. Org. Chem. 1985, 50,
5451.
Gilbert, E. J.; Chisholm, J. D.; Van Vranken, D. L. J. Org.
Chem. 1999, 64, 5670.
Saulnier, M. G.; Gribble, G. W. J. Org. Chem. 1982, 47,
757.
1
a digital melting-point apparatus and uncorrected. H
NMR spectra were recorded on a Bruker Avance DMX
400 MHz instrument using TMS as an internal standard
and CDCl3 as a solvent. EI-MS was carried out with a
Thermo DSQ GC/MS instrument.
Poissonnet, G.; Theret-Bettiol, M. H.; Dodd, R. H. J. Org.
Chem. 1996, 61, 2273.
Xu, H.; Ye, F.; Dai, H. Chin. J. Chem. 2008, 26, 1465.
General procedure for the synthesis of N-arylsul-
fonylindoles 3a— 3l
10 Xu, H.; Zhang, L. Chin. J. Org. Chem. 2008, 28, 1243 (in
Chinese).
11 Xu, H.; Fan, L. L. Chem. Pharm. Bull. 2008, 56, 1496.
12 Xu, H.; Fan, L. L. Chem. Pharm. Bull. 2009, 57, 321.
13 Fan, L. L.; Liu, W. Q.; Xu, H.; Yang, L. M.; Lü, M.; Zheng,
Y. T. Chem. Pharm. Bull. 2009, 57, 797.
The mixture of the p-toluenesulfonyl chloride 1a
(104.8 mg, 0.55 mmol), indole 2a (58.6 mg, 0.5 mmol),
NaOH (35 mg, 0.875 mmol), and TEBA (11.4 mg, 0.05
mmol) in dichloromethane (2 mL) in a 25 mL round
bottomed flask was reacted at room temperature. When
the reaction was complete after 1.5 h according to TLC
analysis, the reaction mixture was filtered, and the fil-
trate was concentrated in vacuo and purified by PTLC
to give 3a in a 93% yield.
14 Arisawa, M.; Terada, Y.; Takahashi, K.; Nakayawa, M.;
Nishida, A. J. Org. Chem. 2006, 71, 4255.
(E0905232 Cheng, F.; Dong, H.)
Chin. J. Chem. 2010, 28, 125— 127
© 2010 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
127